Quantum Spin Hall Edge States and Interlayer Coupling in Twisted Bilayer WTe2

被引:7
|
作者
Luepke, Felix [1 ,3 ,5 ]
Waters, Dacen [1 ,2 ]
Pham, Anh D. [3 ]
Yan, Jiaqiang [4 ]
Mandrus, David G. [4 ,5 ,6 ]
Ganesh, Panchapakesan [3 ]
Hunt, Benjamin M. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[6] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
关键词
Topological insulators; van der Waals heterostructure; twisted bilayers; scanning tunneling microscopy; quantum spin Hall edge states;
D O I
10.1021/acs.nanolett.2c00432
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moire pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.
引用
收藏
页码:5674 / 5680
页数:7
相关论文
共 50 条
  • [31] Interlayer coherence and entanglement in bilayer quantum Hall states at filling factor ν=2/λ
    Calixto, M.
    Perez-Romero, E.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (48)
  • [32] Edge states of bilayer graphene in the quantum Hall regime
    Mazo, V.
    Shimshoni, E.
    Fertig, H. A.
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [33] Spin polarization of the quantum spin Hall edge states
    Christoph Brüne
    Andreas Roth
    Hartmut Buhmann
    Ewelina M. Hankiewicz
    Laurens W. Molenkamp
    Joseph Maciejko
    Xiao-Liang Qi
    Shou-Cheng Zhang
    Nature Physics, 2012, 8 (6) : 485 - 490
  • [34] Spin polarization of the quantum spin Hall edge states
    Bruene, Christoph
    Roth, Andreas
    Buhmann, Hartmut
    Hankiewicz, Ewelina M.
    Molenkamp, Laurens W.
    Maciejko, Joseph
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    NATURE PHYSICS, 2012, 8 (06) : 485 - 490
  • [35] The study on quantum material WTe2
    Pan, Xing-Chen
    Wang, Xuefeng
    Song, Fengqi
    Wang, Baigeng
    ADVANCES IN PHYSICS-X, 2018, 3 (01): : 591 - 605
  • [36] Quantum pump in quantum spin Hall edge states
    Cheng, Fang
    SOLID STATE COMMUNICATIONS, 2016, 242 : 16 - 20
  • [37] Exploring interlayer coupling in the twisted bilayer PtTe2
    Ahn, Jeonghwan
    Kang, Seoung-Hun
    Yoon, Mina
    Krogel, Jaron T.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [38] Atomic Resolution Imaging of Highly Air-Sensitive Monolayer and Twisted-Bilayer WTe2
    Yuan, Fang
    Jia, Yanyu
    Cheng, Guangming
    Singha, Ratnadwip
    Lei, Shiming
    Yao, Nan
    Wu, Sanfeng
    Schoop, Leslie M.
    NANO LETTERS, 2023, 23 (15) : 6868 - 6874
  • [39] Deteriorated Interlayer Coupling in Twisted Bilayer Cobaltites
    Rong, Dongke
    Chen, Xiuqi
    Chen, Shengru
    Zhang, Jinfeng
    Xu, Yue
    Shang, Yan-Xing
    Hong, Haitao
    Cui, Ting
    Wang, Qianying
    Ge, Chen
    Wang, Can
    Zheng, Qiang
    Zhang, Qinghua
    Wang, Lingfei
    Deng, Yu
    Jin, Kuijuan
    Liu, Gang-Qin
    Guo, Er-Jia
    NANO LETTERS, 2025, 25 (14) : 5965 - 5973
  • [40] Research progress of two-dimensional quantum spin Hall insulator in monolayer 1T′-WTe2
    Jia, Liang-Guang
    Liu, Meng
    Chen, Yao-Yao
    Zhang, Yu
    Wang, Ye-Liang
    ACTA PHYSICA SINICA, 2022, 71 (12)