Quantum Spin Hall Edge States and Interlayer Coupling in Twisted Bilayer WTe2

被引:7
|
作者
Luepke, Felix [1 ,3 ,5 ]
Waters, Dacen [1 ,2 ]
Pham, Anh D. [3 ]
Yan, Jiaqiang [4 ]
Mandrus, David G. [4 ,5 ,6 ]
Ganesh, Panchapakesan [3 ]
Hunt, Benjamin M. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[6] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
关键词
Topological insulators; van der Waals heterostructure; twisted bilayers; scanning tunneling microscopy; quantum spin Hall edge states;
D O I
10.1021/acs.nanolett.2c00432
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moire pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.
引用
收藏
页码:5674 / 5680
页数:7
相关论文
共 50 条
  • [21] Quantum Spin Hall States in 2D Monolayer WTe2/MoTe2 Lateral Heterojunctions for Topological Quantum Computation
    Ohfuchi, Mari
    Sekine, Akihiko
    ACS APPLIED NANO MATERIALS, 2023, 6 (03) : 2020 - 2026
  • [22] Tunable electronic structure in twisted WTe2/WSe2 heterojunction bilayer
    Chen, Zi-Si
    Guo, Wen-Ti
    Ye, Jiefeng
    Zhong, Kehua
    Zhang, Jian-Min
    Huang, Zhigao
    AIP ADVANCES, 2022, 12 (04)
  • [23] Quantum spin Hall effect in twisted bilayer graphene
    Finocchiaro, F.
    Guinea, F.
    San-Jose, P.
    2D MATERIALS, 2017, 4 (02):
  • [24] Enhanced interlayer coupling in twisted bilayer graphene quantum dots
    Wang, Xian
    Yang, Mingli
    APPLIED SURFACE SCIENCE, 2022, 600
  • [25] Intrinsic spin Hall conductivity of the semimetals MoTe2 and WTe2
    Zhou, Jiaqi
    Qiao, Junfeng
    Bournel, Arnaud
    Zhao, Weisheng
    PHYSICAL REVIEW B, 2019, 99 (06)
  • [26] Controlled Coupling of Spin-Resolved Quantum Hall Edge States
    Karmakar, Biswajit
    Venturelli, Davide
    Chirolli, Luca
    Taddei, Fabio
    Giovannetti, Vittorio
    Fazio, Rosario
    Roddaro, Stefano
    Biasiol, Giorgio
    Sorba, Lucia
    Pellegrini, Vittorio
    Beltram, Fabio
    PHYSICAL REVIEW LETTERS, 2011, 107 (23)
  • [27] Effective lifting of the topological protection of quantum spin Hall edge states by edge coupling
    Stuehler, R.
    Kowalewski, A.
    Reis, F.
    Jungblut, D.
    Dominguez, F.
    Scharf, B.
    Li, G.
    Schaefer, J.
    Hankiewicz, E. M.
    Claessen, R.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [28] Effective lifting of the topological protection of quantum spin Hall edge states by edge coupling
    R. Stühler
    A. Kowalewski
    F. Reis
    D. Jungblut
    F. Dominguez
    B. Scharf
    G. Li
    J. Schäfer
    E. M. Hankiewicz
    R. Claessen
    Nature Communications, 13
  • [29] Edge conduction in monolayer WTe2
    Fei, Zaiyao
    Palomaki, Tauno
    Wu, Sanfeng
    Zhao, Wenjin
    Cai, Xinghan
    Sun, Bosong
    Nguyen, Paul
    Finney, Joseph
    Xu, Xiaodong
    Cobden, David H.
    NATURE PHYSICS, 2017, 13 (07) : 677 - +
  • [30] Nonlinear Nernst effect in bilayer WTe2
    Zeng, Chuanchang
    Nandy, Snehasish
    Taraphder, A.
    Tewari, Sumanta
    PHYSICAL REVIEW B, 2019, 100 (24)