Quantum Spin Hall Edge States and Interlayer Coupling in Twisted Bilayer WTe2

被引:7
|
作者
Luepke, Felix [1 ,3 ,5 ]
Waters, Dacen [1 ,2 ]
Pham, Anh D. [3 ]
Yan, Jiaqiang [4 ]
Mandrus, David G. [4 ,5 ,6 ]
Ganesh, Panchapakesan [3 ]
Hunt, Benjamin M. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[5] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[6] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
关键词
Topological insulators; van der Waals heterostructure; twisted bilayers; scanning tunneling microscopy; quantum spin Hall edge states;
D O I
10.1021/acs.nanolett.2c00432
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2. At the tBL edges, we observe the characteristic spectroscopic signatures of the QSH edge states. For small twist angles, a rectangular moire pattern develops, which results in local modifications of the band structure. Using first-principles calculations, we quantify the interactions in tBL WTe2 and its topological edge states as a function of interlayer distance and conclude that it is possible to engineer the topology of WTe2 bilayers via the twist angle as well as interlayer interactions.
引用
收藏
页码:5674 / 5680
页数:7
相关论文
共 50 条
  • [1] Giant nonlinear Hall effect in twisted bilayer WTe2
    He, Zhihai
    Weng, Hongming
    NPJ QUANTUM MATERIALS, 2021, 6 (01)
  • [2] Giant nonlinear Hall effect in twisted bilayer WTe2
    Zhihai He
    Hongming Weng
    npj Quantum Materials, 6
  • [3] Custodial glide symmetry of quantum spin Hall edge modes in monolayer WTe2
    Ok, Seulgi
    Muechler, Lukas
    Di Sante, Domenico
    Sangiovanni, Giorgio
    Thomale, Ronny
    Neupert, Titus
    PHYSICAL REVIEW B, 2019, 99 (12)
  • [4] Symmetry Engineering in Twisted Bilayer WTe2
    Zhang, Yijin
    Kamiya, Keisuke
    Yamamoto, Takato
    Sakano, Masato
    Yang, Xiaohan
    Masubuchi, Satoru
    Okazaki, Shota
    Shinokita, Keisuke
    Chen, Tongmin
    Aso, Kohei
    Yamada-Takamura, Yukiko
    Oshima, Yoshifumi
    Watanabe, Kenji
    Taniguchi, Takashi
    Matsuda, Kazunari
    Sasagawa, Takao
    Ishizaka, Kyoko
    Machida, Tomoki
    NANO LETTERS, 2023, 23 (20) : 9280 - 9286
  • [5] Imaging quantum spin Hall edges in monolayer WTe2
    Shi, Yanmeng
    Kahn, Joshua
    Niu, Ben
    Fei, Zaiyao
    Sun, Bosong
    Cai, Xinghan
    Francisco, Brian A.
    Wu, Di
    Shen, Zhi-Xun
    Xu, Xiaodong
    Cobden, David H.
    Cui, Yong-Tao
    SCIENCE ADVANCES, 2019, 5 (02)
  • [6] Influence of lattice termination on the edge states of the quantum spin Hall insulator monolayer 1T′-WTe2
    Lau, Alexander
    Ray, Rajyavardhan
    Varjas, Daniel
    Akhmerov, Anton R.
    PHYSICAL REVIEW MATERIALS, 2019, 3 (05)
  • [7] Possible Sliding Regimes in Twisted Bilayer WTe2
    Wu, Yi-Ming
    Murthy, Chaitanya
    Kivelson, Steven A.
    PHYSICAL REVIEW LETTERS, 2024, 133 (24)
  • [8] Tunable Electronic Structure in Twisted Bilayer WTe2
    Chen, Zi-Si
    Huang, Lu
    Guo, Wen-Ti
    Zhong, Kehua
    Zhang, Jian-Min
    Huang, Zhigao
    FRONTIERS IN PHYSICS, 2022, 10
  • [9] Canted Persistent Spin Texture and Quantum Spin Hall Effect in WTe2
    Garcia, Jose H.
    Vila, Marc
    Hsu, Chuang-Han
    Waintal, Xavier
    Pereira, Vitor M.
    Roche, Stephan
    PHYSICAL REVIEW LETTERS, 2020, 125 (25)
  • [10] Thermal robustness of the quantum spin Hall phase in monolayer WTe2
    Marrazzo, Antimo
    PHYSICAL REVIEW MATERIALS, 2023, 7 (02):