Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data

被引:82
|
作者
Wang, Xianghai [1 ,2 ]
Feng, Yining [2 ]
Song, Ruoxi [1 ]
Mu, Zhenhua [1 ]
Song, Chuanming [2 ]
机构
[1] Liaoning Normal Univ, Sch Geog, Dalian 116029, Peoples R China
[2] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-sensor data fusion; Hierarchical dense fusion strategy; Modality attention; HSI-LiDAR classification; self-attention; IMAGE CLASSIFICATION; NETWORKS;
D O I
10.1016/j.inffus.2021.12.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With recent advance in Earth Observation techniques, the availability of multi-sensor data acquired in the same geographical area has been increasing greatly, which makes it possible to jointly depict the underlying landcover phenomenon using different sensor data. In this paper, a novel multi-attentive hierarchical fusion net (MAHiDFNet) is proposed to realize the feature-level fusion and classification of hyperspectral image (HSI) with Light Detection and Ranging (LiDAR) data. More specifically, a triple branch HSI-LiDAR Convolutional Neural Network (CNN) backbone is first developed to simultaneously extract the spatial features, spectral features and elevation features of the land-cover objects. On this basis, hierarchical fusion strategy is adopted to fuse the oriented feature embeddings. In the shallow feature fusion stage, we propose a novel modality attention (MA) module to generate the modality integrated features. By fully considering the correlation and heterogeneity between different sensor data, feature interaction and integration is released by the proposed MA module. At the same time, self-attention modules are also adopted to highlight the modality specific features. In the deep feature fusion stage, the obtained modality specific features and modality integrated features are fused to construct the hierarchical feature fusion framework. Experiments on three real HSI-LiDAR datasets demonstrate the effectiveness of the proposed framework. The code will be public on https://github.com/SYFYN0317/-MAHiDFNet.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [11] A Hierarchical Coarse-Fine Adaptive Fusion Network for the Joint Classification of Hyperspectral and LiDAR Data
    Pan, Haizhu
    Li, Xuan
    Ge, Haimiao
    Wang, Liguo
    Shi, Cuiping
    REMOTE SENSING, 2024, 16 (21)
  • [12] Autoencoder-Based Fusion Classification of Hyperspectral and LiDAR Data
    Wang Yibo
    Dai Song
    Song Dongmei
    Cao Guofa
    Ren Jie
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [13] DISCRIMINATIVE FEATURE EXTRACTION AND FUSION FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA
    Song, Weiwei
    Gao, Zhi
    Zhang, Yongjun
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2271 - 2274
  • [14] Attention-Guided Fusion and Classification for Hyperspectral and LiDAR Data
    Huang, Jing
    Zhang, Yinghao
    Yang, Fang
    Chai, Li
    Tansey, Kevin
    REMOTE SENSING, 2024, 16 (01)
  • [15] Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data
    Lu, Ting
    Ding, Kexin
    Fu, Wei
    Li, Shutao
    Guo, Anjing
    INFORMATION FUSION, 2023, 93 : 118 - 131
  • [16] CLASSIFICATION OF CLOUDY HYPERSPECTRAL IMAGE AND LIDAR DATA BASED ON FEATURE FUSION AND DECISION FUSION
    Luo, Renbo
    Liao, Wenzhi
    Zhang, Hongyan
    Pi, Youguo
    Philips, Wilfried
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2518 - 2521
  • [17] DSHFNet: Dynamic Scale Hierarchical Fusion Network Based on Multiattention for Hyperspectral Image and LiDAR Data Classification
    Feng, Yining
    Song, Liyang
    Wang, Lu
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [18] PROBABILITY FUSION FOR HYPERSPECTRAL AND LIDAR DATA
    Ge, Chiru
    Du, Qian
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2675 - 2678
  • [19] Hyperspectral and LiDAR Classification With Semisupervised Graph Fusion
    Xia, Junshi
    Liao, Wenzhi
    Du, Peijun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (04) : 666 - 670
  • [20] Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion
    Zhang, Mengmeng
    Ghamisi, Pedram
    Li, Wei
    REMOTE SENSING LETTERS, 2017, 8 (10) : 957 - 966