Multi-attentive hierarchical dense fusion net for fusion classification of hyperspectral and LiDAR data

被引:82
|
作者
Wang, Xianghai [1 ,2 ]
Feng, Yining [2 ]
Song, Ruoxi [1 ]
Mu, Zhenhua [1 ]
Song, Chuanming [2 ]
机构
[1] Liaoning Normal Univ, Sch Geog, Dalian 116029, Peoples R China
[2] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-sensor data fusion; Hierarchical dense fusion strategy; Modality attention; HSI-LiDAR classification; self-attention; IMAGE CLASSIFICATION; NETWORKS;
D O I
10.1016/j.inffus.2021.12.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With recent advance in Earth Observation techniques, the availability of multi-sensor data acquired in the same geographical area has been increasing greatly, which makes it possible to jointly depict the underlying landcover phenomenon using different sensor data. In this paper, a novel multi-attentive hierarchical fusion net (MAHiDFNet) is proposed to realize the feature-level fusion and classification of hyperspectral image (HSI) with Light Detection and Ranging (LiDAR) data. More specifically, a triple branch HSI-LiDAR Convolutional Neural Network (CNN) backbone is first developed to simultaneously extract the spatial features, spectral features and elevation features of the land-cover objects. On this basis, hierarchical fusion strategy is adopted to fuse the oriented feature embeddings. In the shallow feature fusion stage, we propose a novel modality attention (MA) module to generate the modality integrated features. By fully considering the correlation and heterogeneity between different sensor data, feature interaction and integration is released by the proposed MA module. At the same time, self-attention modules are also adopted to highlight the modality specific features. In the deep feature fusion stage, the obtained modality specific features and modality integrated features are fused to construct the hierarchical feature fusion framework. Experiments on three real HSI-LiDAR datasets demonstrate the effectiveness of the proposed framework. The code will be public on https://github.com/SYFYN0317/-MAHiDFNet.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] Classification of Hyperspectral and LiDAR Data Using Multi-Modal Transformer Cascaded Fusion Net
    Wang, Shuo
    Hou, Chengchao
    Chen, Yiming
    Liu, Zhengjun
    Zhang, Zhenbei
    Zhang, Geng
    REMOTE SENSING, 2023, 15 (17)
  • [2] BIHAF-Net: Bilateral Interactive Hierarchical Adaptive Fusion Network for Collaborative Classification of Hyperspectral and LiDAR Data
    Zhao, Yunji
    Bao, Wenming
    Xu, Jun
    Xu, Xiaozhuo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15971 - 15988
  • [3] COMBINING FEATURE FUSION AND DECISION FUSION FOR CLASSIFICATION OF HYPERSPECTRAL AND LIDAR DATA
    Liao, Wenzhi
    Bellens, Rik
    Pizurica, Aleksandra
    Gautama, Sidharta
    Philips, Wilfried
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 1241 - 1244
  • [4] DEEP FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR THEMATIC CLASSIFICATION
    Chen, Yushi
    Li, Chunyang
    Ghamisi, Pedram
    Shi, Chunyu
    Gu, Yanfeng
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3591 - 3594
  • [5] FUSION OF HYPERSPECTRAL AND LIDAR DATA IN CLASSIFICATION OF URBAN AREAS
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    Phinn, Stuart
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
  • [6] Hyperspectral and LiDAR data fusion in features based classification
    Farsat Heeto Abdulrahman
    Arabian Journal of Geosciences, 2021, 14 (24)
  • [7] Urban classification by multi-feature fusion of hyperspectral image and LiDAR data
    Cao Q.
    Ma A.
    Zhong Y.
    Zhao J.
    Zhao B.
    Zhang L.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 892 - 903
  • [8] MULTI-SCALE FEATURE FUSION FOR HYPERSPECTRAL AND LIDAR DATA JOINT CLASSIFICATION
    Zhang, Maqun
    Gao, Feng
    Dong, Junyu
    Qi, Lin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2856 - 2859
  • [9] A convolutional block multi-attentive fusion network for underground natural gas micro-leakage detection of hyperspectral and thermal data
    Li, Kangning
    Xiong, Kangni
    Jiang, Jinbao
    Wang, Xinda
    ENERGY, 2025, 319
  • [10] Multi-level interactive fusion network based on adversarial learning for fusion classification of hyperspectral and LiDAR data
    Fan, Yingying
    Qian, Yurong
    Gong, Weijun
    Chu, Zhuang
    Qin, Yugang
    Muhetaer, Palidan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257