The regular quantizations of certain holomorphic bundles

被引:4
作者
Feng, Zhiming [1 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614000, Sichuan, Peoples R China
关键词
Bergman functions; Balanced metrics; Regular quantizations; Complex projective spaces; Hermitian holomorphic vector bundles; SCALAR CURVATURE; BERGMAN-KERNEL; ASYMPTOTIC-EXPANSION; KAHLER-MANIFOLDS; CONSTRUCTION;
D O I
10.1007/s10455-019-09690-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the regular quantizations of Kahler manifolds by using the first two coefficients of Bergman function expansions. Firstly, we obtain sufficient and necessary conditions for certain Hermitian holomorphic vector bundles and their ball subbundles to be regular quantizations. Secondly, we obtain that some projective bundles over the Fano manifolds M admit regular quantizations if and only if M are biholomorphically isomorphism to the complex projective spaces. Finally, we obtain the balanced metrics on certain Hermitian holomorphic vector bundles and their ball subbundles over the Riemann sphere.
引用
收藏
页码:95 / 120
页数:26
相关论文
共 40 条
  • [1] Aghedu F.C., 2018, ARXIV180904431
  • [2] Moment maps, scalar curvature and quantization of Kahler manifolds
    Arezzo, C
    Loi, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (03) : 543 - 559
  • [3] On homothetic balanced metrics
    Arezzo, Claudio
    Loi, Andrea
    Zuddas, Fabio
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2012, 41 (04) : 473 - 491
  • [4] Berezin FA., 1974, Math. USSR-Izv., V8, P1109, DOI [10.1070/IM1974v008n05ABEH002140, DOI 10.1070/IM1974V008N05ABEH002140]
  • [5] A direct approach to Bergman kernel asymptotics for positive line bundles
    Berman, Robert
    Berndtsson, Bo
    Sjostrand, Johannes
    [J]. ARKIV FOR MATEMATIK, 2008, 46 (02): : 197 - 217
  • [6] Balanced metrics on the Fock-Bargmann-Hartogs domains
    Bi, Enchao
    Feng, Zhiming
    Tu, Zhenhan
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 49 (04) : 349 - 359
  • [7] QUANTIZATION OF KAHLER-MANIFOLDS .2.
    CAHEN, M
    GUTT, S
    RAWNSLEY, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) : 73 - 98
  • [8] Catlin D, 1999, TRENDS MATH, P1
  • [9] Dai XZ, 2006, J DIFFER GEOM, V72, P1
  • [10] Donaldson SK, 2001, J DIFFER GEOM, V59, P479