How Bulk Sensitive is Hard X-ray Photoelectron Spectroscopy: Accounting for the Cathode-Electrolyte Interface when Addressing Oxygen Redox

被引:41
作者
Lebens-Higgins, Zachary W. [2 ]
Chung, Hyeseung [3 ]
Zuba, Mateusz J. [4 ]
Rana, Jatinkumar [4 ]
Li, Yixuan [3 ]
Faenza, Nicholas, V [5 ]
Pereira, Nathalie [5 ]
McCloskey, Bryan D. [6 ,7 ]
Rodolakis, Fanny [8 ]
Yang, Wanli [9 ]
Whittingham, M. Stanley [4 ]
Amatucci, Glenn G. [5 ]
Meng, Ying Shirley [3 ]
Lee, Tien-Lin [10 ]
Piper, Louis F. J. [1 ,4 ]
机构
[1] SUNY Binghamton, Dept Phys Appl Phys & Astron & Mat Sci & Engn, Binghamton, NY 13902 USA
[2] SUNY Binghamton, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA
[3] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA
[4] SUNY Binghamton, Mat Sci & Engn, Binghamton, NY 13902 USA
[5] Rutgers State Univ, Dept Mat Sci & Engn, Energy Storage Res Grp, North Brunswick, NJ 08902 USA
[6] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[8] Argonne Natl Lab, Argonne, IL 60439 USA
[9] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[10] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England
基金
美国国家科学基金会;
关键词
ANIONIC REDOX; 1ST CYCLE; LI; LITHIUM; EVOLUTION; BATTERIES; OXIDES; STATES; XPS; QUANTIFICATION;
D O I
10.1021/acs.jpclett.0c00229
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sensitivity to the "bulk" oxygen core orbital makes hard X-ray photoelectron spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates. Various studies have reported an additional O 1s peak (530-531 eV) at high voltages, which has been considered a direct signature of the bulk oxygen redox process. Here, we find the emergence of a 530.4 eV O 1s HAXPES peak for three model cathodes-Li2MnO3, Li-rich NMC, and NMC 442-that shows no clear link to oxygen redox. Instead, the 530.4 eV peak for these three systems is attributed to transition metal reduction and electrolyte decomposition in the near-surface region. Claims of oxygen redox relying on photoelectron spectroscopy must explicitly account for the surface sensitivity of this technique and the extent of the cathode degradation layer.
引用
收藏
页码:2106 / 2112
页数:7
相关论文
共 25 条
  • [1] Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy
    Malmgren, S.
    Ciosek, K.
    Hahlin, M.
    Gustafsson, T.
    Gorgoi, M.
    Rensmo, H.
    Edstrom, K.
    ELECTROCHIMICA ACTA, 2013, 97 : 23 - 32
  • [2] Operando Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Sodium-Oxygen Redox Reactions
    Mao, Baohua
    Dai, Yang
    Cai, Jun
    Li, Qingtian
    Jiang, Chenggong
    Li, Yimin
    Xie, Jingying
    Liu, Zhi
    TOPICS IN CATALYSIS, 2018, 61 (20) : 2123 - 2128
  • [3] Hard X-ray Photoelectron Spectroscopy Probing Fe Segregation during the Oxygen Evolution Reaction
    Longo, Filippo
    Lloreda-Jurado, Pedro Javier
    Gil-Rostra, Jorge
    Gonzalez-Elipe, Agustin R.
    Yubero, Francisco
    Thoma'', Sabrina L. J.
    Neels, Antonia
    Borgschulte, Andreas
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (43) : 59516 - 59527
  • [4] Bulk spin polarization of magnetite from spin-resolved hard x-ray photoelectron spectroscopy
    Schmitt, M.
    Kirilmaz, O.
    Chernov, S.
    Babenkov, S.
    Vasilyev, D.
    Fedchenko, O.
    Medjanik, K.
    Matveyev, Yu
    Gloskovskii, A.
    Schlueter, C.
    Winkelmann, A.
    Dudy, L.
    Elmers, H-J
    Schoenhense, G.
    Sing, M.
    Claessen, R.
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [5] The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation
    Cherkashinin, Gennady
    Nikolowski, Kristian
    Ehrenberg, Helmut
    Jacke, Susanne
    Dimesso, Lucangelo
    Jaegermann, Wolfram
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (35) : 12321 - 12331
  • [6] In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions
    Lu, Yi-Chun
    Crumlin, Ethan J.
    Veith, Gabriel M.
    Harding, Jonathon R.
    Mutoro, Eva
    Baggetto, Loic
    Dudney, Nancy J.
    Liu, Zhi
    Shao-Horn, Yang
    SCIENTIFIC REPORTS, 2012, 2
  • [7] Chemical Analysis of the Interface in Bulk-Heterojunction Solar Cells by X-ray Photoelectron Spectroscopy Depth Profiling
    Busby, Yan
    List-Kratochvil, Emil J. W.
    Pireaux, Jean-Jacques
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (04) : 3842 - 3848
  • [8] The Buried Carbon/Solid Electrolyte Interphase in Li-ion Batteries Studied by Hard X-ray Photoelectron Spectroscopy
    Hogstrom, Katarzyna Ciosek
    Malmgren, Sara
    Hahlin, Maria
    Gorgoi, Mihaela
    Nyholm, Leif
    Rensmo, Hakan
    Edstrom, Kristina
    ELECTROCHIMICA ACTA, 2014, 138 : 430 - 436
  • [9] Probing the interface of Fe3O4/GaAs thin films by hard x-ray photoelectron spectroscopy
    Paul, M.
    Mueller, A.
    Ruff, A.
    Schmid, B.
    Berner, G.
    Mertin, M.
    Sing, M.
    Claessen, R.
    PHYSICAL REVIEW B, 2009, 79 (23)
  • [10] Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries
    Young, Benjamin T.
    Heskett, David R.
    Nguyen, Cao Cuong
    Nie, Mengyun
    Woicik, Joseph C.
    Lucht, Brett L.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (36) : 20004 - 20011