Predictive ability of current machine learning algorithms for type 2 diabetes mellitus: A meta-analysis

被引:16
作者
Kodama, Satoru [1 ,2 ]
Fujihara, Kazuya [2 ]
Horikawa, Chika [3 ]
Kitazawa, Masaru [1 ]
Iwanaga, Midori [1 ,2 ]
Kato, Kiminori [1 ,2 ]
Watanabe, Kenichi [1 ,2 ]
Nakagawa, Yoshimi [4 ]
Matsuzaka, Takashi [5 ]
Shimano, Hitoshi [5 ]
Sone, Hirohito [2 ]
机构
[1] Niigata Univ, Grad Sch Med & Dent Sci, Dept Prevent Noncommunicable Dis & Promot, Niigata, Japan
[2] Niigata Univ, Grad Sch Med & Dent Sci, Dept Hematol Endocrinol & Meta, Niigata, Japan
[3] Univ Niigata Prefecture, Fac Human Life Studies, Dept Hlth & Nutr, Niigata, Japan
[4] Toyama Univ, Inst Nat Med, Div Complex Biosyst Res, Toyama, Japan
[5] Univ Tsukuba, Fac Med, Dept Internal Med Endocrinol & Metabolism, Ibaraki, Japan
基金
日本学术振兴会;
关键词
Machine learning; Meta-analysis; Type 2 diabetes mellitus; SYSTEMATIC REVIEWS; DIAGNOSTIC-TEST; ACCURACY; PEOPLE; RISK;
D O I
10.1111/jdi.13736
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/Introduction Recently, an increasing number of cohort studies have suggested using machine learning (ML) to predict type 2 diabetes mellitus. However, its predictive ability remains inconclusive. This meta-analysis evaluated the current ability of ML algorithms for predicting incident type 2 diabetes mellitus. Materials and Methods We systematically searched longitudinal studies published from 1 January 1950 to 17 May 2020 using MEDLINE and EMBASE. Included studies had to compare ML's classification with the actual incidence of type 2 diabetes mellitus, and present data on the number of true positives, false positives, true negatives and false negatives. The dataset for these four values was pooled with a hierarchical summary receiver operating characteristic and a bivariate random effects model. Results There were 12 eligible studies. The pooled sensitivity, specificity, positive likelihood ratio and negative likelihood ratio were 0.81 (95% confidence interval [CI] 0.67-0.90), 0.82 [95% CI 0.74-0.88], 4.55 [95% CI 3.07-6.75] and 0.23 [95% CI 0.13-0.42], respectively. The area under the summarized receiver operating characteristic curve was 0.88 (95% CI 0.85-0.91). Conclusions Current ML algorithms have sufficient ability to help clinicians determine whether individuals will develop type 2 diabetes mellitus in the future. However, persons should be cautious before changing their attitude toward future diabetes risk after learning the result of the diabetes prediction test using ML algorithms.
引用
收藏
页码:900 / 908
页数:9
相关论文
共 37 条
[1]   Predicting long-term type 2 diabetes with support vector machine using oral glucose tolerance test [J].
Abbas, Hasan T. ;
Alic, Lejla ;
Erraguntla, Madhav ;
Ji, Jim X. ;
Abdul-Ghani, Muhammad ;
Abbasi, Qammer H. ;
Qaraqe, Marwa K. .
PLOS ONE, 2019, 14 (12)
[2]   Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project [J].
Alghamdi, Manal ;
Al-Mallah, Mouaz ;
Keteylan, Steven ;
Brawner, Clinton ;
Ehrman, Jonathan ;
Sakr, Sherif .
PLOS ONE, 2017, 12 (07)
[3]   A Predictive Metabolic Signature for the Transition From Gestational Diabetes Mellitus to Type 2 Diabetes [J].
Allalou, Amina ;
Nalla, Amarnadh ;
Prentice, Kacey J. ;
Liu, Ying ;
Zhang, Ming ;
Dai, Feihan F. ;
Ning, Xian ;
Osborne, Lucy R. ;
Cox, Brian J. ;
Gunderson, Erica P. ;
Wheeler, Michael B. .
DIABETES, 2016, 65 (09) :2529-2539
[4]  
Anderson Jeffrey P, 2015, J Diabetes Sci Technol, V10, P6, DOI 10.1177/1932296815620200
[5]   Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study [J].
Bramer, Wichor M. ;
Rethlefsen, Melissa L. ;
Kleijnen, Jos ;
Franco, Oscar H. .
SYSTEMATIC REVIEWS, 2017, 6
[6]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[7]   Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model [J].
Cahn, Avivit ;
Shoshan, Avi ;
Sagiv, Tal ;
Yesharim, Rachel ;
Goshen, Ran ;
Shalev, Varda ;
Raz, Itamar .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2020, 36 (02)
[8]   Prediction of Incident Diabetes in the Jackson Heart Study Using High-Dimensional Machine Learning [J].
Casanova, Ramon ;
Saldana, Santiago ;
Simpson, Sean L. ;
Lacy, Mary E. ;
Subauste, Angela R. ;
Blackshear, Chad ;
Wagenknecht, Lynne ;
Bertoni, Alain G. .
PLOS ONE, 2016, 11 (10)
[9]   Machine Learning for the Prediction of New-Onset Diabetes Mellitus during 5-Year Follow-up in Non-Diabetic Patients with Cardiovascular Risks [J].
Choi, Byoung Geol ;
Rha, Seung-Woon ;
Kim, Suhng Wook ;
Kang, Jun Hyuk ;
Park, Ji Young ;
Noh, Yung-Kyun .
YONSEI MEDICAL JOURNAL, 2019, 60 (02) :191-199
[10]   Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis [J].
De Silva, Kushan ;
Lee, Wai Kit ;
Forbes, Andrew ;
Demmer, Ryan T. ;
Barton, Christopher ;
Enticott, Joanne .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 143