Sharp phase transition for random loop models on trees

被引:0
作者
Betz, Volker [1 ]
Ehlert, Johannes [1 ]
Lees, Benjamin [2 ]
Roth, Lukas [1 ]
机构
[1] Tech Univ Darmstadt, Darmstadt, Germany
[2] Univ Bristol, Bristol, Avon, England
关键词
random loop model; random interchange; random stirring; phase transition; INFINITE CYCLES;
D O I
10.1214/21-EJP677
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the random loop model on the d-ary tree. For d >= 3, we establish a (locally) sharp phase transition for the existence of infinite loops. Moreover, we derive rigorous bounds that in principle allow to determine the value of the critical parameter with arbitrary precision. Additionally, we prove the existence of an asymptotic expansion for the critical parameter in terms of d-1. The corresponding coefficients can be determined in a schematic way and we calculate them up to order 6.
引用
收藏
页数:26
相关论文
共 25 条
[1]  
Adamczak Radoslaw, 2018, ARXIV180808902
[2]   GEOMETRIC ASPECTS OF QUANTUM SPIN STATES [J].
AIZENMAN, M ;
NACHTERGAELE, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (01) :17-63
[3]  
Angel Omer, 2003, DISCRETE RANDOM WALK, P9, DOI DOI 10.46298/DMTCS.3342
[4]  
[Anonymous], 2002, A Primer of Real Analytic Functions
[5]  
Athreya K.B., 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[6]   A numerical study of the 3D random interchange and random loop models [J].
Barp, Alessandro ;
Barp, Edoardo Gabriele ;
Briol, Francois-Xavier ;
Ueltschi, Daniel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (34)
[7]   CYCLE STRUCTURE OF THE INTERCHANGE PROCESS AND REPRESENTATION THEORY [J].
Berestycki, Nathanael ;
Kozma, Gady .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (02) :265-281
[8]   Emergence of giant cycles and slowdown transition in random transpositions and k-cycles [J].
Berestycki, Nathanael .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 16 :152-173
[9]   Phase transition for loop representations of quantum spin systems on trees [J].
Betz, Volker ;
Ehlert, Johannes ;
Lees, Benjamin .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (11)
[10]   Large cycles in random permutations related to the Heisenberg model [J].
Bjornberg, J. E. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 :1-11