Refined Second Law of Thermodynamics for Fast Random Processes

被引:136
作者
Aurell, Erik [2 ,3 ,4 ]
Gawedzki, Krzysztof [1 ]
Mejia-Monasterio, Carlos [5 ]
Mohayaee, Roya [6 ]
Muratore-Ginanneschi, Paolo [7 ]
机构
[1] Univ Lyon, ENS Lyon, CNRS, Phys Lab, F-69364 Lyon, France
[2] KTH, ACCESS Linnaeus Ctr, S-10044 Stockholm, Sweden
[3] KTH, AlbaNova Univ Ctr, Computat Biol Dept, S-10691 Stockholm, Sweden
[4] Aalto Univ, Dept Informat & Comp Sci, Aalto 00076, Finland
[5] Tech Univ Madrid, Dept Rural Engn, Lab Phys Properties, Madrid 28040, Spain
[6] Univ Paris 06, CNRS, Inst Astrophys Paris, F-75014 Paris, France
[7] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
基金
芬兰科学院;
关键词
Second Law of Thermodynamics; Landauer principle; Monge-Kantorovich optimal mass transport; FLUCTUATION THEOREM; LANDAUERS PRINCIPLE; ENTROPY PRODUCTION; STOCHASTIC-CONTROL; IRREVERSIBILITY; INFORMATION;
D O I
10.1007/s10955-012-0478-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a refined version of the Second Law of Thermodynamics for Langevin stochastic processes describing mesoscopic systems driven by conservative or non-conservative forces and interacting with thermal noise. The refinement is based on the Monge-Kantorovich optimal mass transport and becomes relevant for processes far from quasi-stationary regime. General discussion is illustrated by numerical analysis of the optimal memory erasure protocol for a model for micron-size particle manipulated by optical tweezers.
引用
收藏
页码:487 / 505
页数:19
相关论文
共 56 条
[1]   Current Trends in Finite-Time Thermodynamics [J].
Andresen, Bjarne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (12) :2690-2704
[2]   Dynamical randomness, information, and Landauer's principle [J].
Andrieux, D. ;
Gaspard, P. .
EPL, 2008, 81 (02)
[3]  
[Anonymous], 1784, Histoire de l'Academie Royale des Sciences [annee 1781. Avec les Memoires de Mathematique de Physique, pour la meme Annee] (2e partie) [Histoire: 34-38
[4]  
[Anonymous], 1998, Network optimization: Continuous and discrete models
[5]   Boundary layers in stochastic thermodynamics [J].
Aurell, Erik ;
Mejia-Monasterio, Carlos ;
Muratore-Ginanneschi, Paolo .
PHYSICAL REVIEW E, 2012, 85 (02)
[6]   Optimal Protocols and Optimal Transport in Stochastic Thermodynamics [J].
Aurell, Erik ;
Mejia-Monasterio, Carlos ;
Muratore-Ginanneschi, Paolo .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)
[7]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[8]  
Benamou J.-D., 1997, CONT MATH, V226, P1
[9]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[10]   THE THERMODYNAMICS OF COMPUTATION - A REVIEW [J].
BENNETT, CH .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (12) :905-940