Embeddings through discrete sets of balls

被引:3
作者
Borell, Stefan [1 ]
Kutzschebauch, Frank [1 ]
机构
[1] Univ Bern, Inst Math, CH-3012 Bern, Switzerland
来源
ARKIV FOR MATEMATIK | 2008年 / 46卷 / 02期
关键词
D O I
10.1007/s11512-008-0079-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate whether a Stein manifold M which allows proper holomorphic embedding into C(n) supercript stop can be embedded in such a way that the image contains a given discrete set of points and in addition follow arbitrarily close to prescribed tangent directions in a neighbourhood of the discrete set. The infinitesimal version was proven by Forstneric to be always possible. We give a general positive answer if the dimension of M is smaller than n/2 and construct counterexamples for all other dimensional relations. The obstruction we use in these examples is a certain hyperbolicity condition.
引用
收藏
页码:251 / 269
页数:19
相关论文
共 17 条
[1]  
ABHYANKAR SS, 1975, J REINE ANGEW MATH, V276, P148
[2]   ON THE GROUP OF HOLOMORPHIC AUTOMORPHISMS OF C(N) [J].
ANDERSEN, E ;
LEMPERT, L .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :371-388
[3]  
[Anonymous], COMPLEX VAR THEORY A
[4]  
[Anonymous], INVENT MATH
[5]   Non-equivalent embeddings into complex Euclidean spaces [J].
Borell, Stefan ;
Kutzschebauch, Frank .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2006, 17 (09) :1033-1046
[6]   An embedding of C in C-2 with hyperbolic complement [J].
Buzzard, GT ;
Fornaess, JE .
MATHEMATISCHE ANNALEN, 1996, 306 (03) :539-546
[7]   Nonlinearizable holomorphic group actions [J].
Derksen, H ;
Kutzschebauch, F .
MATHEMATISCHE ANNALEN, 1998, 311 (01) :41-53
[8]  
DERKSEN H, 1997, COMPLEX GEOMETRIC AN
[9]  
EISENMAN DA, 1970, MEMOIRS AM MATH SOC, V96
[10]   Interpolation by holomorphic automorphisms and embeddings in Cn [J].
Franc Forstneric .
The Journal of Geometric Analysis, 1999, 9 (1) :93-117