The distinguishing number of Cartesian products of complete graphs

被引:40
作者
Imrich, Wilfried [1 ]
Jerebic, Janja [2 ,3 ]
Klavzar, Sandi [2 ,3 ]
机构
[1] Univ Leoben, A-8700 Leoben, Austria
[2] Univ Maribor, Dept Math & Comp Sci, SLO-2000 Maribor, Slovenia
[3] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
关键词
D O I
10.1016/j.ejc.2007.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d labels that is preserved only by a trivial automorphism. We prove that Cartesian products of relatively prime graphs whose sizes do not differ too much can be distinguished with a small number of colors. We determine the distinguishing number of the Cartesian product K-k square K-n for all k and n, either explicitly or by a short recursion. We also introduce column-invariant sets of vectors and prove a switching lemma that plays a key role in the proofs. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:922 / 929
页数:8
相关论文
共 16 条
[1]  
Albertson M.O., 1996, ELECT J COMBIN, V3
[2]  
Albertson MO, 2005, ELECTRON J COMB, V12
[3]   The distinguishing number of the hypercube [J].
Bogstad, B ;
Cowen, LJ .
DISCRETE MATHEMATICS, 2004, 283 (1-3) :29-35
[4]   The distinguishing number of the direct product and wreath product action [J].
Chan, Melody .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (03) :331-345
[5]  
Chan M, 2006, ELECTRON J COMB, V13
[6]  
CHEN CT, 2006, ELECT J COMBIN, V13
[7]   On the local distinguishing numbers of cycles [J].
Cheng, CT ;
Cowen, LJ .
DISCRETE MATHEMATICS, 1999, 196 (1-3) :97-108
[8]  
Collins KL, 2006, ELECTRON J COMB, V13
[9]  
FISHER MJ, 2006, ARXIVMATHC30607465, V1
[10]  
IMRICH W, 2000, WIL INT S D, pR13