Development of Highly Stable and Mass Transfer-Enhanced Cathode Catalysts: Support-Free Electrospun Intermetallic FePt Nanotubes for Polymer Electrolyte Membrane Fuel Cells

被引:197
作者
Lee, Jaehyuk [1 ]
Yoo, Ji Mun [2 ,3 ]
Ye, Youngjin [1 ]
Mun, Yeongdong [1 ]
Lee, Seonggyu [1 ]
Kim, Ok-Hee [2 ,3 ]
Rhee, Hee-Woo [4 ]
Lee, Hyung Ik [5 ]
Sung, Yung-Eun [2 ,3 ]
Lee, Jinwoo [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea
[2] Inst for Basic Sci Korea, Ctr Nanoparticle Res, Seoul 151742, South Korea
[3] Seoul Natl Univ, Dept Chem & Biol Engn, Seoul 151742, South Korea
[4] Sogang Univ, Dept Chem & Biomol Engn, Seoul 121742, South Korea
[5] 4 3 Agcy Def Dev, Taejon 354, South Korea
基金
新加坡国家研究基金会;
关键词
catalyst durability; electrocatalysis; intermetallic compounds; mass transport; nanotube structures; POROUS CARBON NANOFIBERS; OXYGEN-REDUCTION; ELECTROCATALYSTS; DEGRADATION; STABILITY; COMPOSITE; OXIDATION; ALLOY;
D O I
10.1002/aenm.201402093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton exchange membrane fuel cells (PEMFCs) are an alternative clean energy source and they are attracting increased attention. However, several limitations such as degradation of the carbon support and Nafion ionomer in the cathode electrode must be overcome for practical applications of PEMFCs. Support-free 1D-ordered intermetallic nanotubes (NTs) are considered as promising candidates for highly active and durable cathode catalysts in PEMFCs. However, 1D nanotubes are difficult to produce at large scale because they have generally been synthesized using a template-based method that requires multistep synthetic routes. Herein, a simple and scalable method to produce ordered-intermetallic FePt nanotubes by electrospinning is reported. When tested as cathode catalysts, under the US Department of Energy's reference condition, the activity of face-centered-tetragonal (fct) FePt NTs surpasses that of commercial Pt/C. In an accelerated degradation test at 1.4 V for 3 h, the degradation activity rate of fct-FePt NTs is only 10%, whereas that of commercial Pt/C catalysts is 65%. For practical PEMFCs, this approach would provide simple routes to support-free intermetallic nanotube structures with superior kinetic activity and higher durability than those of commercial Pt/C catalyst.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Platinum-Coated Palladium Nanotubes as Oxygen Reduction Reaction Electrocatalysts [J].
Alia, Shaun M. ;
Jensen, Kurt O. ;
Pivovar, Bryan S. ;
Yan, Yushan .
ACS CATALYSIS, 2012, 2 (05) :858-863
[2]   Porous Platinum Nanotubes for Oxygen Reduction and Methanol Oxidation Reactions [J].
Alia, Shaun M. ;
Zhang, Gang ;
Kisailus, David ;
Li, Dongsheng ;
Gu, Shuang ;
Jensen, Kurt ;
Yan, Yushan .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (21) :3742-3746
[3]   Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions [J].
Avasarala, Bharat ;
Moore, Richard ;
Haldar, Pradeep .
ELECTROCHIMICA ACTA, 2010, 55 (16) :4765-4771
[4]   Scientific aspects of polymer electrolyte fuel cell durability and degradation [J].
Borup, Rod ;
Meyers, Jeremy ;
Pivovar, Bryan ;
Kim, Yu Seung ;
Mukundan, Rangachary ;
Garland, Nancy ;
Myers, Deborah ;
Wilson, Mahlon ;
Garzon, Fernando ;
Wood, David ;
Zelenay, Piotr ;
More, Karren ;
Stroh, Ken ;
Zawodzinski, Tom ;
Boncella, James ;
McGrath, James E. ;
Inaba, Minoru ;
Miyatake, Kenji ;
Hori, Michio ;
Ota, Kenichiro ;
Ogumi, Zempachi ;
Miyata, Seizo ;
Nishikata, Atsushi ;
Siroma, Zyun ;
Uchimoto, Yoshiharu ;
Yasuda, Kazuaki ;
Kimijima, Ken-ichi ;
Iwashita, Norio .
CHEMICAL REVIEWS, 2007, 107 (10) :3904-3951
[5]   Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions [J].
Chen, Zhongwei ;
Waje, Mahesh ;
Li, Wenzhen ;
Yan, Yushan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) :4060-4063
[6]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[7]   Porous Pt-Ni-P Composite Nanotube Arrays: Highly Electroactive and Durable Catalysts for Methanol Electrooxidation [J].
Ding, Liang-Xin ;
Wang, An-Liang ;
Li, Gao-Ren ;
Liu, Zhao-Qing ;
Zhao, Wen-Xia ;
Su, Cheng-Yong ;
Tong, Ye-Xiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (13) :5730-5733
[8]   Transition Metal Ion-Chelating Ordered Mesoporous Carbons as Noble Metal-Free Fuel Cell Catalysts [J].
Dombrovskis, Johanna K. ;
Jeong, Hu Y. ;
Fossum, Kjell ;
Terasaki, Osamu ;
Palmqvist, Anders E. C. .
CHEMISTRY OF MATERIALS, 2013, 25 (06) :856-861
[9]   Electrospinning materials for energy-related applications and devices [J].
Dong, Zexuan ;
Kennedy, Scott J. ;
Wu, Yiquan .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4886-4904
[10]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35