Quantization of non-Hamiltonian and dissipative systems

被引:55
作者
Tarasov, VE [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Theoret High Energy Phys Dept, Moscow 119899, Russia
基金
俄罗斯基础研究基金会;
关键词
quantum mechanics; canonical quantization; quantum dissipative systems;
D O I
10.1016/S0375-9601(01)00548-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalization of canonical quantization which maps a dynamical operator to a dynamical superoperator is suggested. Weyl quantization of dynamical operator, which cannot be represented as Poisson bracket with some function, is considered. The usual Weyl quantization of observables is a specific case of suggested quantization. This approach allows to define consistent quantization procedure for non-Hamiltonian and dissipative systems. Examples of the harmonic oscillator with friction (generalized Lorenz-Rossler-Leipnik-Newton equation), the Fokker-Planck-type system and Lorenz-type system are considered. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 39 条
  • [1] [Anonymous], MATH INTRO QUANTUM M
  • [2] WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES
    BALAZS, NL
    JENNINGS, BK
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06): : 347 - 391
  • [3] On dissipative systems and related variational principles
    Bateman, H
    [J]. PHYSICAL REVIEW, 1931, 38 (04): : 815 - 819
  • [4] Berezin F. A., 1971, TMF, V6, P194
  • [5] BEREZIN FA, 1983, SCHRODINGER EQUATION
  • [6] BEREZIN FA, 1967, P MOSCOW MATH SOC, V17, P117
  • [7] BLASONE M, HEPTH0007138
  • [8] A NOTE ON THE QUANTIZATION OF DISSIPATIVE SYSTEMS
    BRITTIN, WE
    [J]. PHYSICAL REVIEW, 1950, 77 (03): : 396 - 397
  • [9] Cardirola P., 1941, NUOVO CIMENTO, V18, P393
  • [10] QUANTUM DISSIPATION
    CELEGHINI, E
    RASETTI, M
    VITIELLO, G
    [J]. ANNALS OF PHYSICS, 1992, 215 (01) : 156 - 170