Consistent affinity representation learning with dual low-rank constraints for multi-view subspace clustering

被引:9
作者
Fu, Lele [1 ]
Li, Jieling [2 ]
Chen, Chuan [3 ]
机构
[1] Sun Yat sen Univ, Sch Syst Sci & Engn, Guangzhou, Peoples R China
[2] Xiamen Univ, Dept Informat & Commun Engn, Xiamen, Peoples R China
[3] Sun Yat sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
关键词
Multi-view clustering; Consistent representation; Subspace learning; Grassmann manifold; MATRIX; FRAMEWORK; ALGORITHM;
D O I
10.1016/j.neucom.2022.09.145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view clustering aims to achieve better accuracy of data clustering by leveraging complementary information embedded in multi-view data. How to learn a consistent clustering-friendly affinity repre-sentation matrix is a crucial issue. In this paper, we propose a consistent affinity representation learning method with dual low-rank constraints for multi-view subspace clustering. To be specific, for capturing the high-order correlations and global consensus among views, we collect the subspace representations of all views into a 3-order tensor, which is imposed with the tensor singular value decomposition (t-SVD) based tensor nuclear norm for achieving the low-rank recovery. Thus, we learn a consistent affinity matrix by fusing multiple subspace representations on the Grassmann manifold rather than handling them in the Euclidean space. In order to enhance the global cluster structure in the uniform subspace, the low-rank constraint is imposed on the consistent affinity matrix. Furthermore, the local geometric structure of the uniform subspace is encoded via graph regularization. The established model can be solved via the alternating direction method of multipliers algorithm (ADMM). Ultimately, the proposed method is experimentally validated to be superior to other state-of-the-art clustering algorithms.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 56 条
[1]  
Asuncion A, 2007, UCI MACHINE LEARNING
[2]   ALGORITHM - SOLUTION OF MATRIX EQUATION AX+XB = C [J].
BARTELS, RH ;
STEWART, GW .
COMMUNICATIONS OF THE ACM, 1972, 15 (09) :820-&
[3]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[4]   Diversity-induced Multi-view Subspace Clustering [J].
Cao, Xiaochun ;
Zhang, Changqing ;
Fu, Huazhu ;
Liu, Si ;
Zhang, Hua .
2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, :586-594
[5]   Multi-view clustering via deep concept factorization [J].
Chang, Shuai ;
Hu, Jie ;
Li, Tianrui ;
Wang, Hao ;
Peng, Bo .
KNOWLEDGE-BASED SYSTEMS, 2021, 217
[6]   Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering [J].
Chen, Yongyong ;
Xiao, Xiaolin ;
Peng, Chong ;
Lu, Guangming ;
Zhou, Yicong .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) :92-104
[7]   Generalized Nonconvex Low-Rank Tensor Approximation for Multi-View Subspace Clustering [J].
Chen, Yongyong ;
Wang, Shuqin ;
Peng, Chong ;
Hua, Zhongyun ;
Zhou, Yicong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :4022-4035
[8]   Tensor-Based Low-Dimensional Representation Learning for Multi-View Clustering [J].
Cheng, Miaomiao ;
Jing, Liping ;
Ng, Michael K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (05) :2399-2414
[9]   Integrative cancer patient stratification via subspace merging [J].
Ding, Hao ;
Sharpnack, Michael ;
Wang, Chao ;
Huang, Kun ;
Machiraju, Raghu .
BIOINFORMATICS, 2019, 35 (10) :1653-1659
[10]   Clustering on Multi-Layer Graphs via Subspace Analysis on Grassmann Manifolds [J].
Dong, Xiaowen ;
Frossard, Pascal ;
Vandergheynst, Pierre ;
Nefedov, Nikolai .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (04) :905-918