On the geometry of spaces of oriented geodesics

被引:22
作者
Alekseevsky, Dmitri V. [2 ,3 ]
Guilfoyle, Brendan [1 ]
Klingenberg, Wilhelm [4 ]
机构
[1] IT Tralee, Dept Comp & Math, Clash, Tralee County K, Ireland
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[3] Univ Edinburgh, Maxwell Insitute Math Sci, JCMB, Edinburgh EH9 3JZ, Midlothian, Scotland
[4] Univ Durham, Sch Math Sci, Durham DH1 3LE, England
关键词
Space of geodesics; Homogeneous manifolds; Pseudo-Riemannian metrics; Symplectic structures; Kahler structures; LINES;
D O I
10.1007/s10455-011-9261-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be either a simply connected pseudo-Riemannian space of constant curvature or a rank one Riemannian symmetric space, and consider the space L(M) of oriented geodesics of M. The space L(M) is a smooth homogeneous manifold and in this paper we describe all invariant symplectic structures, (para)complex structures, pseudo-Riemannian metrics and (para)Kahler structure on L(M).
引用
收藏
页码:389 / 409
页数:21
相关论文
共 17 条
[1]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[2]  
Besse A., 1978, Manifolds all of whose geodesics are closed, V93
[3]  
Ferrand E, 1997, GEOMETRIAE DEDICATA, V68, P79, DOI 10.1023/A:1004945807350
[4]   ON THE SPACE OF ORIENTED GEODESICS OF HYPERBOLIC 3-SPACE [J].
Georgiou, Nikos ;
Guilfoyle, Brendan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (04) :1183-1219
[5]  
Godbillon C., 1969, Geometrie Differentielle et Mecanique Analytique
[6]  
Gorbatsevich V.V., 1997, FDN LIE THEORY LIE T
[7]   An indefinite Kahler metric on the space of oriented lines [J].
Guilfoyle, B ;
Klingenberg, W .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :497-509
[8]  
Guilfoyle B., 2008, MATHDG08080851
[9]   MONOPOLES AND GEODESICS [J].
HITCHIN, NJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (04) :579-602
[10]  
KOBAYASHI S, 1996, FDN DIFFERENTIAL GEO, V2