A Short Proof for Graph Energy is at Least Twice of Minimum Degree

被引:0
作者
Akbari, Saieed [1 ]
Hosseinzadeh, Mohammad Ali [2 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Amol Univ Special Modern Technol, Fac Engn Modern Technol, Amol 4616849767, Iran
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The energy epsilon(G) of a graph G is the sum of the absolute values of all eigenvalues of G. Zhou in (MATCH Commun. Math. Comput. Chem. 55 (2006) 91-94) studied the problem of bounding the graph energy in terms of the minimum degree together with other parameters. He proved his result for quadrangle-free graphs. Recently, in (MATCH Commun. Math. Comput. Chem. 81 (2019) 393-404) it is shown that for every graph G, epsilon(G) >= 2 delta(G), where delta(G) is the minimum degree of G, and the equality holds if and only if G is a complete multipartite graph with equal size of parts. Here, we provide a short proof for this result. Also, we give an affirmative answer to a problem proposed in (MATCH Commun. Math. Comput. Chem. 81 (2019) 393-404).
引用
收藏
页码:631 / 633
页数:3
相关论文
共 7 条
[1]  
Collatz L., 1957, Abh Math Sem Univ Hamburg, V21, P63, DOI [10.1007/BF02941924, DOI 10.1007/BF02941924]
[2]  
Cvetkovi DM., 1980, Spectra of graphs
[3]  
Gutman I., 1978, Berichte Mathematik Statistik Sektion Forschungszentrum Graz, V103, P1, DOI DOI 10.1088/1742-5468/2008/10/P10008
[4]  
Li X., 2012, Graph Energy
[5]  
Ma XB, 2019, MATCH-COMMUN MATH CO, V81, P393
[6]  
Smith J.H., 1970, Comb. Struct. Appl., P403
[7]  
Zhou B, 2006, MATCH-COMMUN MATH CO, V55, P91