ANALYSIS OF MARKOV-MODULATED INFINITE-SERVER QUEUES IN THE CENTRAL-LIMIT REGIME

被引:16
作者
Blom, Joke [1 ]
De Turck, Koen [2 ]
Mandjes, Michel [3 ,4 ,5 ]
机构
[1] CWI, NL-1090 GB Amsterdam, Netherlands
[2] Univ Ghent, TELIN, B-9000 Ghent, Belgium
[3] Univ Amsterdam, Korteweg de Vries Inst Math, NL-1098 XH Amsterdam, Netherlands
[4] Eindhoven Univ Technol, Eurandom, NL-5600 MB Eindhoven, Netherlands
[5] Univ Amsterdam, Fac Econ & Business, IBIS, Amsterdam, Netherlands
基金
比利时弗兰德研究基金会;
关键词
M/M/INFINITY-QUEUE; MATRIX;
D O I
10.1017/S026996481500008X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper focuses on an infinite-server queue modulated by an independently evolving finite-state Markovian background process, with transition rate matrix Q = (q(ij))(i,j=1)(d). Both arrival rates and service rates are depending on the state of the background process. The main contribution concerns the derivation of central limit theorems (CLTs) for the number of customers in the system at time t >= 0, in the asymptotic regime in which the arrival rates lambda(i) are scaled by a factor N, and the transition rates qij by a factor N-alpha, with alpha is an element of R+. The specific value of alpha has a crucial impact on the result: (i) for alpha > 1 the system essentially behaves as an M/M/infinity queue, and in the CLT the centered process has to be normalized by root N; (ii) for alpha < 1, the centered process has to be normalized by N1-alpha/2, with the deviation matrix appearing in the expression for the variance.
引用
收藏
页码:433 / 459
页数:27
相关论文
共 17 条
  • [1] A Functional Central Limit Theorem for a Markov-Modulated Infinite-Server Queue
    Anderson, D.
    Blom, J.
    Mandjes, M.
    Thorsdottir, H.
    de Turck, K.
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (01) : 153 - 168
  • [2] Markov-modulated infinite-server queues with general service times
    Blom, J.
    Kella, O.
    Mandjes, M.
    Thorsdottir, H.
    [J]. QUEUEING SYSTEMS, 2014, 76 (04) : 403 - 424
  • [3] Blom Joke, 2013, Analytical and Stochastic Modeling Techniques and Applications. 20th International Conference, ASMTA 2013. Proceedings: LNCS 7984, P81, DOI 10.1007/978-3-642-39408-9_7
  • [4] Time-Scaling Limits for Markov-Modulated Infinite-Server Queues
    Blom, J.
    Mandjes, M.
    Thorsdottir, H.
    [J]. STOCHASTIC MODELS, 2013, 29 (01) : 112 - 127
  • [5] The deviation matrix of a continuous-time Markov chain
    Coolen-Schrijner, P
    van Doorn, EA
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2002, 16 (03) : 351 - 366
  • [6] M/M/∞ queues in semi-Markovian random environment
    D'Auria, B.
    [J]. QUEUEING SYSTEMS, 2008, 58 (03) : 221 - 237
  • [7] The M/M/∞ queue in a random environment
    Falin, G.
    [J]. QUEUEING SYSTEMS, 2008, 58 (01) : 65 - 76
  • [8] An infinite-server queue influenced by a semi-Markovian environment
    Fralix, Brian H.
    Adan, Ivo J. B. F.
    [J]. QUEUEING SYSTEMS, 2009, 61 (01) : 65 - 84
  • [9] SEMI-MARKOV-MODULATED INFINITE-SERVER QUEUES: APPROXIMATIONS BY TIME-SCALING
    Hellings, Ton
    Mandjes, Michel
    Blom, Joke
    [J]. STOCHASTIC MODELS, 2012, 28 (03) : 452 - 477
  • [10] Hilbert D., 1924, METHODEN MATH PHYS, VII