Determination of cable tensions based on frequency differences

被引:25
作者
Ren, Wei-Xin [1 ]
Liu, Hao-Liang [2 ]
Chen, Gang [1 ]
机构
[1] Cent S Univ, Dept Civil Engn, Changsha, Peoples R China
[2] Fuzhou Univ, Dept Civil Engn, Fuzhou 350002, Peoples R China
关键词
cable-braced bridges; vibration measurement; tensile strength;
D O I
10.1108/02644400810855977
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Purpose - Owing to the cable flexibility, it is practically a lot easier to measure the high-vibration frequencies of the cable than the fundamental vibration frequency. The objective of this study is to present a method to determine the cable tension based on frequency differences so that the effects of cable sag and bending stiffness can be included. Design/methodology/approach - The paper includes theoretical derivation, laboratory study to verify the method and practical application in a real bridge. Findings - It is suggested to measure the high-vibration frequencies, and to use the vibration frequency difference to determine the fundamental vibration frequency of the cable and then to estimate the cable tension. The reliability of the method is verified by laboratory tests and the method is then applied to determine cable tensions in a real bridge. Originality/value - This paper provides theoretical derivations to demonstrate that under certain conditions, the frequency difference of a cable with sag and bending is almost equal to the natural frequency of the same cable when it is taut. This unique characteristic of cable vibration is used to determine the cable tension similar to the fundamental frequency-based taut-string formula that is commonly used in practice.
引用
收藏
页码:172 / 189
页数:18
相关论文
共 15 条
[1]  
Casas J.R., 1994, Struct Eng Int, V4, P235, DOI DOI 10.2749/101686694780601700
[2]  
Cunha A., 2001, J BRIDGE ENG, V6, P54, DOI DOI 10.1061/(ASCE)1084-0702(2001)6:1(54)
[3]  
Humar J.L., 1990, Dynamics of structures
[4]  
Irvine H.M., 1981, Cable Structures
[5]   LINEAR THEORY OF FREE VIBRATIONS OF A SUSPENDED CABLE [J].
IRVINE, HM ;
CAUGHEY, TK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1974, 341 (1626) :299-&
[6]   Unified finite difference formulation for free vibration of cables [J].
Mehrabi, AB ;
Tabatabai, H .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1998, 124 (11) :1313-1322
[7]  
Ni YQ, 2002, J SOUND VIB, V257, P301, DOI [10.1006/jsvi.2002.5060, 10.1006/jsvi.5060]
[8]   Empirical formulas to estimate cable tension by cable fundamental frequency [J].
Ren, WX ;
Chen, G ;
Hu, WH .
STRUCTURAL ENGINEERING AND MECHANICS, 2005, 20 (03) :363-380
[9]   Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge [J].
Ren, WX ;
Peng, XL ;
Lin, YQ .
ENGINEERING STRUCTURES, 2005, 27 (04) :535-548
[10]  
REN WX, 2003, P IMAC 21 C STRUCT D