Effect of the montmorillonite intercalant and anhydride maleic grafting on polylactic acid structure and properties

被引:39
作者
Issaadi, Kahina [1 ,2 ]
Habi, Abderrahmane [1 ]
Grohens, Yves [2 ]
Pillin, Isabelle [2 ]
机构
[1] Univ Abderrahmane Mira, Fac Technol, Lab Mat Organ, Bejaia 06000, Algeria
[2] Univ Bretagne Sud, Lab Ingn Mat Bretagne, EA4250, F-56100 Lorient, France
关键词
Nanocomposites; PLA; Maleic anhydride; Cloisite (R); Morphology; Water vapor permeation; MECHANICAL-PROPERTIES; POLY(LACTIC ACID); NANOCOMPOSITES; CLAY; BARRIER; COMPATIBILIZER; PLA; BIODEGRADABILITY; NANOSTRUCTURE; POLYPROPYLENE;
D O I
10.1016/j.clay.2015.01.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The goal of this work is to prepare maleic anhydride grafted poly(lactic acid) (PLAgMA) according to a method described by Hwang et al. in order to investigate its effect as matrix and as compatibilizer on the dispersion of two organic nanofillers into PLA matrix, as well as its effect as compatibilizer on rheological and barrier properties of clay mineral-PLA nanocomposites. Two different montmorillonites, Cloisite (R) 20A and Cloisite (R) 30B, are used in this study. The latter is classically used in pristine PLA nanocomposites. The clay mineral polymer nanocomposites are prepared by the incorporation of 3 mass % of each layered silicate into PLA, PLAgMA and PLA/PLAgMA via melt blending. Transmission electron microscopy micrographs of the PLAgMA/Cloisite (R) blends showed the presence of intercalated and partially exfoliated areas with Cloisite (R) 20A and re-aggregation of the layered silicates with Cloisite (R) 30B. These results are confirmed by rheological behaviors, which showed their dependence on the content of maleic anhydride and nature of montmorillonite. Water vapor permeations (WVP) were strongly reduced by the incorporation of Cloisite (R), and the better results are obtained with C20A/PLA containing 5 mass % of PLAgMA. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 49 条
[1]   A REVIEW OF PARTICULATE REINFORCEMENT THEORIES FOR POLYMER COMPOSITES [J].
AHMED, S ;
JONES, FR .
JOURNAL OF MATERIALS SCIENCE, 1990, 25 (12) :4933-4942
[2]   Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites [J].
Araujo, A. ;
Botelho, G. y ;
Oliveira, M. ;
Machado, A. V. .
APPLIED CLAY SCIENCE, 2014, 88-89 :144-150
[3]   Analysis of Gas Permeability Characteristics of Poly(Lactic Acid)/Poly(Butylene Succinate) Nanocomposites [J].
Bhatia, Amita ;
Gupta, Rahul K. ;
Bhattacharya, Sati N. ;
Choi, Hyoung Jin .
JOURNAL OF NANOMATERIALS, 2012, 2012
[4]   Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites [J].
Bitinis, N. ;
Verdejo, R. ;
Maya, E. M. ;
Espuche, E. ;
Cassagnau, P. ;
Lopez-Manchado, M. A. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2012, 72 (02) :305-313
[5]   Estimation of Stresses Required for Exfoliation of Clay Particles in Polymer Nanocomposites [J].
Borse, Nitin K. ;
Kamal, Musa R. .
POLYMER ENGINEERING AND SCIENCE, 2009, 49 (04) :641-650
[6]  
Cabedo L, 2006, MACROMOL SYMP, V233, P191, DOI [10.1002/masy.200690017, 10.1002/masy.200650124]
[7]  
Carlson D, 1999, J APPL POLYM SCI, V72, P477, DOI 10.1002/(SICI)1097-4628(19990425)72:4<477::AID-APP3>3.0.CO
[8]  
2-Q
[9]   Effect of Nanoclay Hydrophilicity on the Poly(lactic acid)/Clay Nanocomposites Properties [J].
Darie, Raluca N. ;
Paslaru, Elena ;
Sdrobis, Anamaria ;
Pricope, Gina M. ;
Hitruc, Gabriela E. ;
Poiata, Antoniea ;
Baklavaridis, Apostolos ;
Vasile, Cornelia .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (19) :7877-7890
[10]  
Dorgan JR, 2001, MACROMOL SYMP, V175, P55, DOI 10.1002/1521-3900(200110)175:1<55::AID-MASY55>3.0.CO