Processing single-cell RNA-seq data for dimension reduction-based analyses using open-source tools

被引:6
|
作者
Chen, Bob [1 ,2 ,4 ]
Ramirez-Solano, Marisol A. [3 ]
Heiser, Cody N. [1 ,2 ]
Liu, Qi [3 ]
Lau, Ken S. [2 ,5 ,6 ]
机构
[1] Vanderbilt Univ, Program Chem & Phys Biol, Sch Med, Nashville, TN 37232 USA
[2] Vanderbilt Univ, Epithelial Biol Ctr, Med Ctr, Nashville, TN 37232 USA
[3] Vanderbilt Univ, Med Ctr, Dept Biostat, Nashville, TN USA
[4] Vanderbilt Univ, Ctr Quantitat Sci, Med Ctr, Nashville, TN 37232 USA
[5] Vanderbilt Univ, Dept Cell & Dev Biol, Sch Med, Nashville, TN 37232 USA
[6] Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA
来源
STAR PROTOCOLS | 2021年 / 2卷 / 02期
基金
美国国家卫生研究院;
关键词
Bioinformatics; RNA-seq;
D O I
10.1016/j.xpro.2021.100450
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing at interpretable results. shops"for data analysis, analyses and are often inflexible there is no universal solution tive encapsulated cellular we demonstrate a full data source software, including For details
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
    F. William Townes
    Stephanie C. Hicks
    Martin J. Aryee
    Rafael A. Irizarry
    Genome Biology, 20
  • [2] Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model
    Townes, F. William
    Hicks, Stephanie C.
    Aryee, Martin J.
    Irizarry, Rafael A.
    GENOME BIOLOGY, 2019, 20 (01)
  • [3] Correspondence analysis for dimension reduction, batch integration, and visualization of single-cell RNA-seq data
    Lauren L. Hsu
    Aedín C. Culhane
    Scientific Reports, 13
  • [4] Correspondence analysis for dimension reduction, batch integration, and visualization of single-cell RNA-seq data
    Hsu, Lauren L.
    Culhane, Aedin C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data
    Liu, Wei
    Liao, Xu
    Yang, Yi
    Lin, Huazhen
    Yeong, Joe
    Zhou, Xiang
    Shi, Xingjie
    Liu, Jin
    NUCLEIC ACIDS RESEARCH, 2022,
  • [6] VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
    Wang, Dongfang
    Gu, Jin
    GENOMICS PROTEOMICS & BIOINFORMATICS, 2018, 16 (05) : 320 - 331
  • [7] VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder
    Dongfang Wang
    Jin Gu
    Genomics,Proteomics & Bioinformatics, 2018, (05) : 320 - 331
  • [8] Processing single-cell RNA-seq datasets using SingCellaR
    Wang, Guanlin
    Wen, Wei Xiong
    Mead, Adam J.
    Roy, Anindita
    Psaila, Bethan
    Thongjuea, Supat
    STAR PROTOCOLS, 2022, 3 (02):
  • [9] A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data
    Xiang, Ruizhi
    Wang, Wencan
    Yang, Lei
    Wang, Shiyuan
    Xu, Chaohan
    Chen, Xiaowen
    FRONTIERS IN GENETICS, 2021, 12
  • [10] ScDA: A Denoising AutoEncoder Based Dimensionality Reduction for Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Lin, Yongchang
    Li, Jian
    Wang, Jianxin
    Peng, Xiaoqing
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2021, 2021, 13064 : 534 - 545