On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products

被引:50
作者
Brown, Luke A. [1 ]
Dash, Jadunandan [1 ]
Ogutu, Booker O. [1 ]
Richardson, Andrew D. [2 ,3 ,4 ]
机构
[1] Univ Southampton, Geog & Environm, Southampton SO17 1BJ, Hants, England
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[3] No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ USA
[4] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA
基金
美国国家科学基金会;
关键词
Chlorophyll; FAPAR; MERIS; NDVI; PhenoCam; Validation; DIGITAL REPEAT PHOTOGRAPHY; LEAF-AREA; SPECTRAL PROPERTIES; FOREST PHENOLOGY; GLOBAL PRODUCTS; LAND; CHLOROPHYLL; MODIS; VALIDATION; MERIS;
D O I
10.1016/j.agrformet.2017.08.012
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Over the last two decades, satellite-derived estimates of biophysical variables have been increasingly used in operational services, requiring quantification of their accuracy and uncertainty. Evaluating satellite-derived vegetation products is challenging due to their moderate spatial resolution, the heterogeneity of the terrestrial landscape, and difficulties in adequately characterising spatial and temporal vegetation dynamics. In recent years, near-surface remote sensing has emerged as a potential source of data against which satellite-derived vegetation products can be evaluated. Several studies have focussed on the evaluation of satellite-derived phenological transition dates, however in most cases the shape and magnitude of the underlying time-series are neglected. In this paper, we investigated the relationship between the green chromatic coordinate (GCC) derived using near-surface remote sensing and a range of vegetation products derived from the Medium Resolution Imaging Spectrometer (MERIS) throughout the growing season. Moderate to strong relationships between the GCC and vegetation products derived from MERIS were observed at deciduous forest sites. Weak relationships were observed over evergreen forest sites as a result of their subtle seasonality, which is likely masked by atmospheric, bidirectional reflectance distribution function (BRDF), and shadowing effects. Temporal inconsistencies were attributed to the oblique viewing geometry of the digital cameras and differences in the incorporated spectral bands. In addition, the commonly observed summer decline in GCC values was found to be primarily associated with seasonal variations in brown pigment concentration, and to a lesser extent illumination geometry. At deciduous sites, increased sensitivity to initial increases in canopy greenness was demonstrated by the GCC, making it particularly well-suited to identifying the start of season when compared to satellite-derived vegetation products. Nevertheless, in some cases, the relationship between the GCC and vegetation products derived from MERIS was found to saturate asymptotically. This limits the potential of the approach for evaluation of the vegetation products that underlie satellite-derived phenological transition dates, and for the continuous monitoring of vegetation during the growing season, particularly at medium to high biomass study sites.
引用
收藏
页码:280 / 292
页数:13
相关论文
共 62 条
[21]  
GCOS, 2012, GCOS ESS CLIM VAR
[22]   The MERIS Global Vegetation Index (MGVI): description and preliminary application [J].
Gobron, N ;
Pinty, B ;
Verstraete, M ;
Govaerts, Y .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (09) :1917-1927
[23]   Food Security: The Challenge of Feeding 9 Billion People [J].
Godfray, H. Charles J. ;
Beddington, John R. ;
Crute, Ian R. ;
Haddad, Lawrence ;
Lawrence, David ;
Muir, James F. ;
Pretty, Jules ;
Robinson, Sherman ;
Thomas, Sandy M. ;
Toulmin, Camilla .
SCIENCE, 2010, 327 (5967) :812-818
[24]   Cloud-screening algorithm for ENVISAT/MERIS multispectral images [J].
Gomez-Chova, Luis ;
Camps-Valls, Gustavo ;
Calpe-Maravilla, Javier ;
Guanter, Luis ;
Moreno, Jose .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (12) :4105-4118
[25]  
Gond V, 1999, TREE PHYSIOL, V19, P673
[26]   Completion of the 2011 National Land Cover Database for the Conterminous United States - Representing a Decade of Land Cover Change Information [J].
Homer, Collin ;
Dewitz, Jon ;
Yang, Limin ;
Jin, Suming ;
Danielson, Patrick ;
Xian, George ;
Coulston, John ;
Herold, Nathaniel ;
Wickham, James ;
Megown, Kevin .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2015, 81 (05) :345-354
[27]   Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology [J].
Hufkens, Koen ;
Friedl, Mark ;
Sonnentag, Oliver ;
Braswell, Bobby H. ;
Milliman, Thomas ;
Richardson, Andrew D. .
REMOTE SENSING OF ENVIRONMENT, 2012, 117 :307-321
[28]   Use of digital cameras for phenological observations [J].
Ide, Reiko ;
Oguma, Hiroyuki .
ECOLOGICAL INFORMATICS, 2010, 5 (05) :339-347
[29]   PROSPECT - A MODEL OF LEAF OPTICAL-PROPERTIES SPECTRA [J].
JACQUEMOUD, S ;
BARET, F .
REMOTE SENSING OF ENVIRONMENT, 1990, 34 (02) :75-91
[30]   PROSPECT plus SAIL models: A review of use for vegetation characterization [J].
Jacquemoud, Stephane ;
Verhoef, Wout ;
Baret, Frederic ;
Bacour, Cedric ;
Zarco-Tejada, Pablo J. ;
Asner, Gregory P. ;
Francois, Christophe ;
Ustin, Susan L. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 :S56-S66