On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products

被引:50
作者
Brown, Luke A. [1 ]
Dash, Jadunandan [1 ]
Ogutu, Booker O. [1 ]
Richardson, Andrew D. [2 ,3 ,4 ]
机构
[1] Univ Southampton, Geog & Environm, Southampton SO17 1BJ, Hants, England
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[3] No Arizona Univ, Sch Informat Comp & Cyber Syst, Flagstaff, AZ USA
[4] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA
基金
美国国家科学基金会;
关键词
Chlorophyll; FAPAR; MERIS; NDVI; PhenoCam; Validation; DIGITAL REPEAT PHOTOGRAPHY; LEAF-AREA; SPECTRAL PROPERTIES; FOREST PHENOLOGY; GLOBAL PRODUCTS; LAND; CHLOROPHYLL; MODIS; VALIDATION; MERIS;
D O I
10.1016/j.agrformet.2017.08.012
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Over the last two decades, satellite-derived estimates of biophysical variables have been increasingly used in operational services, requiring quantification of their accuracy and uncertainty. Evaluating satellite-derived vegetation products is challenging due to their moderate spatial resolution, the heterogeneity of the terrestrial landscape, and difficulties in adequately characterising spatial and temporal vegetation dynamics. In recent years, near-surface remote sensing has emerged as a potential source of data against which satellite-derived vegetation products can be evaluated. Several studies have focussed on the evaluation of satellite-derived phenological transition dates, however in most cases the shape and magnitude of the underlying time-series are neglected. In this paper, we investigated the relationship between the green chromatic coordinate (GCC) derived using near-surface remote sensing and a range of vegetation products derived from the Medium Resolution Imaging Spectrometer (MERIS) throughout the growing season. Moderate to strong relationships between the GCC and vegetation products derived from MERIS were observed at deciduous forest sites. Weak relationships were observed over evergreen forest sites as a result of their subtle seasonality, which is likely masked by atmospheric, bidirectional reflectance distribution function (BRDF), and shadowing effects. Temporal inconsistencies were attributed to the oblique viewing geometry of the digital cameras and differences in the incorporated spectral bands. In addition, the commonly observed summer decline in GCC values was found to be primarily associated with seasonal variations in brown pigment concentration, and to a lesser extent illumination geometry. At deciduous sites, increased sensitivity to initial increases in canopy greenness was demonstrated by the GCC, making it particularly well-suited to identifying the start of season when compared to satellite-derived vegetation products. Nevertheless, in some cases, the relationship between the GCC and vegetation products derived from MERIS was found to saturate asymptotically. This limits the potential of the approach for evaluation of the vegetation products that underlie satellite-derived phenological transition dates, and for the continuous monitoring of vegetation during the growing season, particularly at medium to high biomass study sites.
引用
收藏
页码:280 / 292
页数:13
相关论文
共 62 条
[1]  
Baret F., 2005, VALERI NETWORK SITES
[2]   LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION -: Part 1:: Principles of the algorithm [J].
Baret, Frederic ;
Hagolle, Olivier ;
Geiger, Bernhard ;
Bicheron, Patrice ;
Miras, Bastien ;
Huc, Mireille ;
Berthelot, Beatrice ;
Nino, Fernando ;
Weiss, Marie ;
Samain, Olivier ;
Roujean, Jean Louis ;
Leroy, Marc .
REMOTE SENSING OF ENVIRONMENT, 2007, 110 (03) :275-286
[3]  
Barker K., 2008, P 2 MERIS AATSR US W
[4]   Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 [J].
Barnes, WL ;
Pagano, TS ;
Salomonson, VV .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (04) :1088-1100
[5]   Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves [J].
Baumann, Matthias ;
Ozdogan, Mutlu ;
Richardson, Andrew D. ;
Radeloff, Volker C. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 54 :72-83
[6]   On the relation between NDVI, fractional vegetation cover, and leaf area index [J].
Carlson, TN ;
Ripley, DA .
REMOTE SENSING OF ENVIRONMENT, 1997, 62 (03) :241-252
[7]   Linking ground-based to satellite-derived phenological metrics in support of habitat assessment [J].
Coops, Nicholas C. ;
Hilker, Thomas ;
Bater, Christopher W. ;
Wulder, Michael A. ;
Nielsen, Scott E. ;
McDermid, Greg ;
Stenhouse, Gordon .
REMOTE SENSING LETTERS, 2012, 3 (03) :191-200
[8]   The MERIS terrestrial chlorophyll index [J].
Dash, J ;
Curran, PJ .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (23) :5403-5413
[9]   Seasonal variation of leaf chlorophyll content of a temperate forest.: Inversion of the PROSPECT model [J].
Demarez, V ;
Gastellu-Etchegorry, JP ;
Mougin, E ;
Marty, G ;
Proisy, C ;
Dufrêne, E ;
Le Dantec, V .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1999, 20 (05) :879-894
[10]  
di Cella U. Morra, 2009, P 4 S HOH TAUR NAT P