miRNA target identification and prediction as a function of time in gene expression data

被引:1
作者
Grigaitis, Pranas [1 ]
Starkuviene, Vytaute [1 ,2 ]
Rost, Ursula [1 ,4 ]
Serva, Andrius [1 ,5 ]
Pucholt, Pascal [1 ,6 ]
Kummer, Ursula [1 ,3 ]
机构
[1] Heidelberg Univ, Ctr Quantitat Anal Mol & Cellular Biosyst Bioquan, Neuenheimer Feld 267, D-69120 Heidelberg, Germany
[2] Vilnius Univ, Inst Biosci, Life Sci Ctr, Vilnius, Lithuania
[3] Heidelberg Univ, COS, Neuenheimer Feld 230, D-69120 Heidelberg, Germany
[4] Univ Mannheim, Sch Business Informat & Math, D-68131 Mannheim, Germany
[5] Fluidigm GmbH, Landaubogen 10, D-81373 Munich, Germany
[6] Uppsala Univ, Dept Med Sci, Akad Sjukhuset, Ing 40,5 Tr, S-75185 Uppsala, Sweden
关键词
miRNA; miRNA target identification; miRNA target predictions; bioinformatics; miR-517a; miR-17; miR-124; miR-135b; MIR-17-92; CLUSTER; CANCER; MICRORNAS; PROLIFERATION; RESOURCE; PROMOTES; UPDATE; SITES;
D O I
10.1080/15476286.2020.1748921
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The understanding of miRNA target interactions is still limited due to conflicting data and the fact that high-quality validation of targets is a time-consuming process. Faster methods like high-throughput screens and bioinformatics predictions are employed but suffer from several problems. One of these, namely the potential occurrence of downstream (i.e. secondary) effects in high-throughput screens has been only little discussed so far. However, such effects limit usage for both the identification of interactions and for the training of bioinformatics tools. In order to analyse this problem more closely, we performed time-dependent microarray screening experiments overexpressing human miR-517a-3p, and, together with published time-dependent datasets of human miR-17-5p, miR-135b and miR-124 overexpression, we analysed the dynamics of deregulated genes. We show that the number of deregulated targets increases over time, whereas seed sequence content and performance of several miRNA target prediction algorithms actually decrease over time. Bioinformatics recognition success of validated miR-17 targets was comparable to that of data gained only 12 h post-transfection. We therefore argue that the timing of microarray experiments is of critical importance for detecting direct targets with high confidence and for the usability of these data for the training of bioinformatics prediction tools.
引用
收藏
页码:990 / 1000
页数:11
相关论文
共 59 条
  • [1] MicroRNA-135b regulates ERα, AR and HIF1AN and affects breast and prostate cancer cell growth
    Aakula, Anna
    Leivonen, Suvi-Katri
    Hintsanen, Petteri
    Aittokallio, Tero
    Ceder, Yvonne
    Borresen-Dale, Anne-Lise
    Perala, Merja
    Ostling, Paivi
    Kallioniemi, Olli
    [J]. MOLECULAR ONCOLOGY, 2015, 9 (07) : 1287 - 1300
  • [2] Predicting effective microRNA target sites in mammalian mRNAs
    Agarwal, Vikram
    Bell, George W.
    Nam, Jin-Wu
    Bartel, David P.
    [J]. ELIFE, 2015, 4
  • [3] The impact of microRNAs on protein output
    Baek, Daehyun
    Villen, Judit
    Shin, Chanseok
    Camargo, Fernando D.
    Gygi, Steven P.
    Bartel, David P.
    [J]. NATURE, 2008, 455 (7209) : 64 - U38
  • [4] OncomiR-17-5p: alarm signal in cancer?
    Bobbili, Madhusudhan Reddy
    Mader, Robert M.
    Grillari, Johannes
    Dellago, Hanna
    [J]. ONCOTARGET, 2017, 8 (41) : 71206 - 71222
  • [5] Endogenous miRNA and Target Concentrations Determine Susceptibility to Potential ceRNA Competition
    Bosson, Andrew D.
    Zamudio, Jesse R.
    Sharp, Phillip A.
    [J]. MOLECULAR CELL, 2014, 56 (03) : 347 - 359
  • [6] MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of post-transcriptional gene regulation
    Bruemmer, Anneke
    Hausser, Jean
    [J]. BIOESSAYS, 2014, 36 (06) : 617 - 626
  • [7] BLAST plus : architecture and applications
    Camacho, Christiam
    Coulouris, George
    Avagyan, Vahram
    Ma, Ning
    Papadopoulos, Jason
    Bealer, Kevin
    Madden, Thomas L.
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [8] miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions
    Chou, Chih-Hung
    Shrestha, Sirjana
    Yang, Chi-Dung
    Chang, Nai-Wen
    Lin, Yu-Ling
    Liao, Kuang-Wen
    Huang, Wei-Chi
    Sun, Ting-Hsuan
    Tu, Siang-Jyun
    Lee, Wei-Hsiang
    Chiew, Men-Yee
    Tai, Chun-San
    Wei, Ting-Yen
    Tsai, Tzi-Ren
    Huang, Hsin-Tzu
    Wang, Chung-Yu
    Wu, Hsin-Yi
    Ho, Shu-Yi
    Chen, Pin-Rong
    Chuang, Cheng-Hsun
    Hsieh, Pei-Jung
    Wu, Yi-Shin
    Chen, Wen-Liang
    Li, Meng-Ju
    Wu, Yu-Chun
    Huang, Xin-Yi
    Ng, Fung Ling
    Buddhakosai, Waradee
    Huang, Pei-Chun
    Lan, Kuan-Chun
    Huang, Chia-Yen
    Weng, Shun-Long
    Cheng, Yeong-Nan
    Liang, Chao
    Hsu, Wen-Lian
    Huang, Hsien-Da
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D296 - D302
  • [9] The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition
    Cloonan, Nicole
    Brown, Mellissa K.
    Steptoe, Anita L.
    Wani, Shivangi
    Chan, Wei Ling
    Forrest, Alistair Rr
    Kolle, Gabriel
    Gabrielli, Brian
    Grimmond, Sean M.
    [J]. GENOME BIOLOGY, 2008, 9 (08)
  • [10] MicroRNA-17-5p: At the Crossroads of Cancer and Aging - A Mini-Review
    Dellago, Hanna
    Bobbili, Madhusudhan Reddy
    Grillari, Johannes
    [J]. GERONTOLOGY, 2017, 63 (01) : 20 - 28