Sub-10-nm Extremely Thin Body InGaAs-on-Insulator MOSFETs on Si Wafers With Ultrathin Al2O3 Buried Oxide Layers

被引:50
作者
Yokoyama, Masafumi [1 ]
Iida, Ryo [1 ]
Kim, Sanghyeon [1 ]
Taoka, Noriyuki [1 ]
Urabe, Yuji [2 ]
Takagi, Hideki [2 ]
Yasuda, Tetsuji [2 ]
Yamada, Hisashi [3 ]
Fukuhara, Noboru [3 ]
Hata, Masahiko [3 ]
Sugiyama, Masakazu [1 ]
Nakano, Yoshiaki [1 ]
Takenaka, Mitsuru [1 ]
Takagi, Shinichi [1 ]
机构
[1] Univ Tokyo, Dept Elect Engn & Informat Syst, Tokyo 1138656, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
[3] Sumitomo Chem Co Ltd, Tsukuba, Ibaraki 3003294, Japan
关键词
CMOS; double-gate FETs; extremely thin body (ETB); ultrathin buried oxide (BOX) (UTBOX); wafer bonding; III-V-OI MOSFET; PERFORMANCE; TRANSISTORS;
D O I
10.1109/LED.2011.2158568
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have demonstrated sub-10-nm extremely thin body (ETB) InGaAs-on-insulator (InGaAs-OI) nMOSFETs on Si wafers with Al2O3 ultrathin buried oxide (UTBOX) layers fabricated by direct wafer bonding process. We have fabricated the ETB InGaAs-OI nMOSFETs with channel thicknesses of 9 and 3.5 nm. The 9-nm-thick ETB InGaAs-OI nMOSFETs with a doping concentration (N-D) of 10(19) cm(-3) exhibit a peak electron mobility of 912 cm(2)/V . s and a mobility enhancement factor of 1.7 times against the Si nMOSFET at a surface carrier density (N-s) of 3 x 10(12) cm(-2). In addition, it has been found that, owing to Al2O3 UTBOX layers, the double-gate operation improves the cutoff properties. As a result, the highest on-current to the lowest off-current (I-on/I-off) ratio of approximately 10(7) has been obtained in the 3.5-nm-thick ETB InGaAs-OI nMOSFETs. These results indicate that the high-mobility III-V nMOSFETs can be realized even in sub-10-nm-thick channels.
引用
收藏
页码:1218 / 1220
页数:3
相关论文
共 14 条
[1]  
[Anonymous], VLSI T
[2]  
Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/nnano.2010.15, 10.1038/NNANO.2010.15]
[3]   High Electron Mobility Metal-Insulator-Semiconductor Field-Effect Transistors Fabricated on (111)-Oriented InGaAs Channels [J].
Ishii, Hiroyuki ;
Miyata, Noriyuki ;
Urabe, Yuji ;
Itatani, Taro ;
Yasuda, Tetsuji ;
Yamada, Hisashi ;
Fukuhara, Noboru ;
Hata, Masahiko ;
Deura, Momoko ;
Sugiyama, Masakazu ;
Takenaka, Mitsuru ;
Takagi, Shinichi .
APPLIED PHYSICS EXPRESS, 2009, 2 (12)
[4]   REVIEW OF SOME CHARGE TRANSPORT PROPERTIES OF SILICON [J].
JACOBONI, C ;
CANALI, C ;
OTTAVIANI, G ;
QUARANTA, AA .
SOLID-STATE ELECTRONICS, 1977, 20 (02) :77-89
[5]  
Kadotani N., 2010, IEDM Technical Digest, P54
[6]   Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors [J].
Ko, Hyunhyub ;
Takei, Kuniharu ;
Kapadia, Rehan ;
Chuang, Steven ;
Fang, Hui ;
Leu, Paul W. ;
Ganapathi, Kartik ;
Plis, Elena ;
Kim, Ha Sul ;
Chen, Szu-Ying ;
Madsen, Morten ;
Ford, Alexandra C. ;
Chueh, Yu-Lun ;
Krishna, Sanjay ;
Salahuddin, Sayeef ;
Javey, Ali .
NATURE, 2010, 468 (7321) :286-289
[7]   THE CARRIER MOBILITIES IN GA0.47IN0.53AS GROWN BY ORGANOMETALLIC CVD AND LIQUID-PHASE EPITAXY [J].
PEARSALL, TP ;
HIRTZ, JP .
JOURNAL OF CRYSTAL GROWTH, 1981, 54 (01) :127-131
[8]   Carrier-transport-enhanced channel CMOS for improved power consumption and performance [J].
Takagi, Shinichi ;
Irisawa, Toshifurni ;
Tezuka, Tsutomu ;
Numata, Toshinori ;
Nakaharai, Shu ;
Hirashita, Norio ;
Moriyama, Yoshihiko ;
Usuda, Koji ;
Toyoda, Eiji ;
Dissanayake, Sanjeewa ;
Shichijo, Masato ;
Nakane, Ryosho ;
Sugahara, Satoshi ;
Takenaka, Mitsuru ;
Sugiyama, Naoharu .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (01) :21-39
[9]   Front-gate InGaAs-on-Insulator metal-insulator-semiconductor field-effect transistors [J].
Urabe, Yuji ;
Yokoyama, Masafumi ;
Takagi, Hideki ;
Yasuda, Tetsuji ;
Miyata, Noriyuki ;
Yamada, Hisashi ;
Fukuhara, Noboru ;
Hata, Masahiko ;
Takenaka, Mitsuru ;
Takagi, Shinichi .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[10]   0.8-V Supply Voltage Deep-Submicrometer Inversion-Mode In0.75Ga0.25As MOSFET [J].
Wu, Y. Q. ;
Wang, W. K. ;
Koybasi, O. ;
Zakharov, D. N. ;
Stach, E. A. ;
Nakahara, S. ;
Hwang, J. C. M. ;
Ye, P. D. .
IEEE ELECTRON DEVICE LETTERS, 2009, 30 (07) :700-702