Genetic diversity and population structure of Zymoseptoria tritici in Ethiopia as revealed by microsatellite markers

被引:13
|
作者
Mekonnen, Tilahun [1 ]
Haileselassie, Teklehaimanot [1 ]
Goodwin, Stephen B. [2 ]
Tesfayea, Kassahun [1 ,3 ]
机构
[1] Addis Ababa Univ, Inst Biotechnol, POB 1176, Addis Ababa, Ethiopia
[2] Purdue Univ, Dept Bot & Plant Pathol, USDA ARS, 915 West State St, W Lafayette, IN 47907 USA
[3] Addis Ababa Univ, Ethiopian Biotechnol Inst, Inst Biotechnol, Addis Ababa, Ethiopia
关键词
Genetic diversity; Microsatellite marker; Population structure; Septoria tritici blotch; Zymoseptoria tritici; PATHOGEN MYCOSPHAERELLA-GRAMINICOLA; ANAMORPH SEPTORIA-TRITICI; SEXUAL REPRODUCTION; WHEAT; BLOTCH; ENVIRONMENT; RESISTANCE; SOFTWARE; LESIONS; LOCI;
D O I
10.1016/j.fgb.2020.103413
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Septoria tritici blotch (STB), caused by Zymoseptoria tritici (formerly: Mycosphaerella graminicola or Septoria tritici), is one of the most devastating diseases of wheat globally. Understanding genetic diversity of the pathogen has supreme importance in developing best management strategies. However, there is dearth of information on the genetic structure of Z. tritici populations in Ethiopia. Therefore, the present study was targeted to uncover the genetic diversity and population structure of Z. tritici populations from the major wheat-growing areas of Ethiopia. Totally, 182 Z. tritici isolates representing eight populations were analyzed with 14 microsatellite markers. All the microsatellite loci were polymorphic and highly informative, and hence useful genetic tools to depict the genetic diversity and population structure of the pathogen. A wide range of diversity indices including number of observed alleles, effective number of alleles, Shannon's diversity index, number of private alleles, Nei's gene diversity and percentage of polymorphic loci (PPL) were computed to determine genetic variation within populations. A high within-populations genetic diversity was confirmed with gene diversity index and PPL values ranging from 0.34 - 0.58 and 79-100% with overall mean of 0.45 and 94%, respectively. Analysis of molecular variance (AMOVA) revealed a moderate genetic differentiation where 92% of the total genetic variation resides within populations, leaving only 8% among populations. Cluster (UPGMA), PCoA and STRUCTURE analyses did not group the populations into sharply genetically distinct clusters according to their geographical origins, likely due to high gene flow (Nm = 5.66) and reproductive biology of the pathogen. All individual samples shared alleles from two subgroups (K = 2) evidencing high potential of genetic admixture. In conclusion, the microsatellite markers used in the present study were highly informative and thus, helped to dissect the genetic structures of Z. tritici populations in Ethiopia. Among the studied populations, those of East Shewa, Arsi, South West Shewa and Bale showed a high genetic diversity, and hence these areas can be considered as hot spots for investigations planned on the pathogen and host-pathogen interactions. Therefore, the present study not only enriches missing information in Ethiopia but also provides new insights into the epidemiology and genetic structure of Z. tritici in Africa where the agro-climatic conditions and the wheat cropping systems are different from other parts of the world. Such baseline information is useful for designing and implementing durable and effective management strategies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Genetic diversity and population structure of Zymoseptoria tritici on bread wheat in Tunisia using SSR markers
    Chedli, Rim Bel Hadj
    Aouini, Lamia
    Ben M'Barek, Sarrah
    Bahri, Bochra Amina
    Verstappen, Els
    Gerrit, H. J. Kema
    Rezgui, Salah
    Yahyaoui, Amor
    Chaabane, Hanene
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2022, 163 (02) : 429 - 440
  • [2] Genetic diversity and population structure of Zymoseptoria tritici on bread wheat in Tunisia using SSR markers
    Rim Bel Hadj Chedli
    Lamia Aouini
    Sarrah Ben M’Barek
    Bochra Amina Bahri
    Els Verstappen
    H. J. Kema Gerrit
    Salah Rezgui
    Amor Yahyaoui
    Hanène Chaabane
    European Journal of Plant Pathology, 2022, 163 : 429 - 440
  • [3] Genetic Diversity and Population Structure of Alnus cremastogyne as Revealed by Microsatellite Markers
    Guo, Hong-Ying
    Wang, Ze-Liang
    Huang, Zhen
    Chen, Zhi
    Yang, Han-Bo
    Kang, Xiang-Yang
    FORESTS, 2019, 10 (03)
  • [4] Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] in Ethiopia as revealed by microsatellite markers
    Nemera, Bethlehem
    Kebede, Mulugeta
    Enyew, Muluken
    Feyissa, Tileye
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2022, 72 (01): : 873 - 884
  • [5] Genetic structure and diversity of Portunus trituberculatus in Chinese population revealed by microsatellite markers
    Guo, Enmian
    Cui, Zhaoxia
    Wu, Danhua
    Hui, Min
    Liu, Yuan
    Wang, Hongxia
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2013, 50 : 313 - 321
  • [6] Genetic diversity and population structure of Rhododendron simsii (Ericaceae) as revealed by microsatellite markers
    Wang, Shuzhen
    Jin, Zhengqiang
    Luo, Yanyan
    Li, Zhiliang
    Fang, Yuanping
    Xiang, Jun
    Jin, Weibin
    NORDIC JOURNAL OF BOTANY, 2019, 37 (04)
  • [7] Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] genotypes in Ethiopia as revealed by microsatellite markers
    Mamo, Wubshet
    Enyew, Muluken
    Mekonnen, Tilahun
    Tesfaye, Kassahun
    Feyissa, Tileye
    HELIYON, 2023, 9 (01)
  • [8] Genetic diversity and population structure of Guinea yams and their wild relatives in South and South West Ethiopia as revealed by microsatellite markers
    Wendawek Abebe Mengesha
    Sebsebe Demissew
    M. F. Fay
    R. J. Smith
    I. Nordal
    P. Wilkin
    Genetic Resources and Crop Evolution, 2013, 60 : 529 - 541
  • [9] Genetic diversity and population structure of Guinea yams and their wild relatives in South and South West Ethiopia as revealed by microsatellite markers
    Mengesha, Wendawek Abebe
    Demissew, Sebsebe
    Fay, M. F.
    Smith, R. J.
    Nordal, I.
    Wilkin, P.
    GENETIC RESOURCES AND CROP EVOLUTION, 2013, 60 (02) : 529 - 541
  • [10] Mitochondrial DNA-based genetic diversity and population structure of Zymoseptoria tritici in Tunisia
    Mouna Naouari
    Ali Siah
    Mohamed Elgazzah
    Philippe Reignault
    Patrice Halama
    European Journal of Plant Pathology, 2016, 146 : 305 - 314