Trimmed LASSO regression estimator for binary response data

被引:3
作者
Sun, Hongwei [1 ,2 ]
Cui, Yuehua [3 ]
Gao, Qian [1 ]
Wang, Tong [1 ]
机构
[1] Shanxi Med Univ, Sch Publ Hlth, Dept Hlth Stat, Taiyuan 030001, Shanxi, Peoples R China
[2] Binzhou Med Univ, Sch Publ Hlth & Management, Dept Hlth Stat, Yantai 264003, Shandong, Peoples R China
[3] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
中国国家自然科学基金;
关键词
Penalized logistic regression; Maximum trimmed likelihood; LASSO; Breakdown point; Variable selection; LOGISTIC-REGRESSION; SELECTION;
D O I
10.1016/j.spl.2019.108679
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A robust LASSO-type penalized logistic regression based on maximum trimmed likelihood is proposed. The robustness property of the proposed method is stated and proved. A comparison of the performances of the proposed method with regular LASSO was conducted via simulations. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 15 条
  • [1] SPARSE LEAST TRIMMED SQUARES REGRESSION FOR ANALYZING HIGH-DIMENSIONAL LARGE DATA SETS
    Alfons, Andreas
    Croux, Christophe
    Gelper, Sarah
    [J]. ANNALS OF APPLIED STATISTICS, 2013, 7 (01) : 226 - 248
  • [2] Ali A., 2018, The generalized lasso problem and uniqueness
  • [3] SNP Selection in Genome-Wide and Candidate Gene Studies via Penalized Logistic Regression
    Ayers, Kristin L.
    Cordell, Heather J.
    [J]. GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 879 - 891
  • [4] Class prediction for high-dimensional class-imbalanced data
    Blagus, Rok
    Lusa, Lara
    [J]. BMC BIOINFORMATICS, 2010, 11 : 523
  • [5] Classification of mislabelled microarrays using robust sparse logistic regression
    Bootkrajang, Jakramate
    Kaban, Ata
    [J]. BIOINFORMATICS, 2013, 29 (07) : 870 - 877
  • [6] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)
  • [7] The breakdown behavior of the maximum likelihood estimator in the logistic regression model
    Croux, C
    Flandre, C
    Haesbroeck, G
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 60 (04) : 377 - 386
  • [8] Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms
    Hadi, AS
    Luceno, A
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 25 (03) : 251 - 272
  • [9] Robust and sparse estimation methods for high-dimensional linear and logistic regression
    Kurnaz, Fatma Sevinc
    Hoffmann, Irene
    Filzmoser, Peter
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 172 : 211 - 222
  • [10] THE COMPLETE SEQUENCE OF HUMAN PREPROCALCITONIN
    LEMOULLEC, JM
    JULLIENNE, A
    CHENAIS, J
    LASMOLES, F
    GULIANA, JM
    MILHAUD, G
    MOUKHTAR, MS
    [J]. FEBS LETTERS, 1984, 167 (01): : 93 - 97