On a singular case in the Hyers-Ulam-Rassias stability of the Wigner equation

被引:12
作者
Chmielinski, J [1 ]
机构
[1] Akad Pedag Krakowie, Inst Matemat, PL-30084 Krakow, Poland
关键词
Wigner equation; Hyers-Ulam-Rassias stability; superstability;
D O I
10.1016/j.jmaa.2003.08.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Investigating the stability of the Wigner equation where the class of its approximate solutions is defined by the inequality parallel to<f(x)vertical barf(y)>\-\<x\y>\\less than or equal toepsilonparallel toxparallel to(p)parallel toyparallel to(p), x, yis an element ofE (E\{0} for p<0 (for E, F Hilbert spaces, f: E -> F, epsilon>0, p is an element of R) we notice that the results are different for p=1. We consider this case and its consequences for a conditional Wigner equation. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:571 / 583
页数:13
相关论文
共 12 条
[1]   The stability of the Wigner equation on a restricted domain [J].
Chmieliñski, J ;
Jung, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 254 (01) :309-320
[2]  
CHMIELINSKI J, IN PRESS MATH INEQUA
[3]  
Chmielinski J., 1994, ANN MATH SIL, V8, P127
[4]  
Chmielinski J., 1998, WYZ SZKOLA PED KRAKO, V15, P49
[5]  
Chmielinski J., 1994, STABILITY MAPPINGS H, P31
[6]  
Gajda Z, 1991, INT J MATH MATH SCI, V14, P431, DOI [DOI 10.1155/S016117129100056X, 10.1155/S016117129100056X]
[7]  
Hyers D. H., 1998, PROGR NONLINEAR DIFF, V34
[8]  
JUNG SM, UNPUB FUNCT DIFFEREN
[9]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280
[10]  
Ratz J., 1996, Aequationes Mathematicae, V52, P1, DOI DOI 10.1007/BF01818323