High internal phase emulsions stabilized solely by sonicated quinoa protein isolate at various pH values and concentrations

被引:53
|
作者
Zuo, Zhongyu [2 ,4 ]
Zhang, Xinxia [2 ,3 ,4 ]
Li, Ting [2 ,4 ]
Zhou, Jianjun [5 ]
Yang, Yang [5 ]
Bian, Xiaobo [6 ]
Wang, Li [1 ,2 ,3 ,4 ]
机构
[1] Jiangnan Univ, Key Lab Carbohydrate Chem & Biotechnol, Minist Educ, State Key Lab Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[2] Jiangnan Univ, Natl Engn Res Ctr Cereal Fermentat & Food Biomfg, Wuxi 214122, Jiangsu, Peoples R China
[3] Jiangnan Univ, Jiangsu Prov Engn Res Ctr Bioact Prod Proc, Lihu Rd 1800, Wuxi 214122, Jiangsu, Peoples R China
[4] Jiangnan Univ, Sch Food Sci & Technol, Wuxi 214122, Jiangsu, Peoples R China
[5] Zhejiang Tianxia Zhengfang Agr Dev Co Ltd, Jinhua 321000, Zhejiang, Peoples R China
[6] Jinhua Acad Agr Sci, Jinhua 321000, Zhejiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Quinoa protein; High internal phase emulsions; Microstructure; Rheological property; Emulsion stability; TRANS-FATTY-ACIDS; NANOPARTICLES; DISPERSIONS; PARTICLES;
D O I
10.1016/j.foodchem.2021.132011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this study, stable high internal phase emulsions (HIPEs) constructed solely by sonicated quinoa protein isolate (QPI) at various pH values and protein concentrations (c) were constructed, and differences of HIPE micro-structures at these conditions were discussed. HIPEs stabilized by QPI at pH 7.0, 9.0 possessed smaller droplet size (14-24 mu m), smoother appearance, and higher physical stability which were caused by polyhedral frame-work microstructure. However, at acidic conditions, QPI aggregates filled in the gaps between droplets (30-52 mu m) instead of adsorbing to oil-water interface, which decreased the stability. The solid-like viscoelasticity of HIPEs were enhanced when the c increased while the increment of pH value had the significant opposite effect (decreased from about G' 1000 Pa, G '' 280 Pa to G' 350 Pa, G '' 50 Pa) due to the microstructure difference. This study broadens the commercial applications of quinoa protein in novel food products like fat substitutes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] High internal phase emulsions gels stabilized by soy protein isolate and rutin complexes: Encapsulation, interfacial properties and in vitro digestibility
    Zhao, Juyang
    Xu, Shuo
    Gu, Liya
    Yang, Feiran
    Fang, Xuwei
    Gao, Shiyong
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2024, 203
  • [32] Enhancing the Viability of Lactobacillus plantarum as Probiotics through Encapsulation with High Internal Phase Emulsions Stabilized with Whey Protein Isolate Microgels
    Su, Jiuling
    Wang, Xiaoqi
    Li, Wei
    Chen, Ligen
    Zeng, Xiaoxiong
    Huang, Qingrong
    Hu, Bing
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (46) : 12335 - 12343
  • [33] Phase Behavior of Medium and High Internal Phase Water-in-Oil Emulsions Stabilized Solely by Hydrophobized Bacterial Cellulose Nanofibrils
    Lee, Koon-Yang
    Blaker, Jonny J.
    Murakami, Ryo
    Heng, Jerry Y. Y.
    Bismarck, Alexander
    LANGMUIR, 2014, 30 (02) : 452 - 460
  • [34] High internal phase emulsions stabilized by starch nanocrystals
    Yang, Tao
    Zheng, Jie
    Zheng, Bi-Sheng
    Liu, Fu
    Wang, Shujun
    Tang, Chuan-He
    FOOD HYDROCOLLOIDS, 2018, 82 : 230 - 238
  • [35] Structural and interfacial characteristics of ultrasonicated lipophilic-protein-stabilized high internal phase Pickering emulsions
    Sun, Yuanda
    Zhong, Mingming
    Zhao, Xiaoming
    Song, Hanyu
    Wang, Qi
    Qi, Baokun
    Jiang, Lianzhou
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2022, 158
  • [36] Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin
    Xu, Yan-Teng
    Liu, Tong-Xun
    Tang, Chuan-He
    FOOD HYDROCOLLOIDS, 2019, 88 : 21 - 30
  • [37] Transparent high internal phase emulsion gels stabilized solely by proteins
    Chen, Xu-Hui
    Tang, Chuan-He
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 608
  • [38] Pickering high internal phase emulsions stabilized by protein-covered cellulose nanocrystals
    Liu, Fu
    Zheng, Jie
    Huang, Cai-Huan
    Tang, Chuan-He
    Ou, Shi-Yi
    FOOD HYDROCOLLOIDS, 2018, 82 : 96 - 105
  • [39] Ultrasonic treatment influences the compactness of quinoa protein microstructure and improves the structural integrity of quinoa protein at the interfaces of high internal phase emulsion
    Zuo, Zhongyu
    Geng, Zhanhui
    Zhang, Xinxia
    Ma, Tianjiao
    Liu, He
    Wang, Li
    FOOD RESEARCH INTERNATIONAL, 2023, 168
  • [40] Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs
    Zeng, Tao
    Wu, Zi-Ling
    Zhu, Jun-You
    Yin, Shou-Wei
    Tang, Chuan-He
    Wu, Lei-Yan
    Yang, Xiao-Quan
    FOOD CHEMISTRY, 2017, 231 : 122 - 130