Lagrange interpolation and finite element superconvergence

被引:11
作者
Li, B [1 ]
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
关键词
finite element; Lagrange interpolation; superconvergence;
D O I
10.1002/num.10078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For d-dimensional Q(k)-type elements with d greater than or equal to 1 and k greater than or equal to 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the finite element solution are superclose in H-1 norm. For d-dimensional P-k-type elements, we consider the standard Lagrange interpolation-the Lagrange interpolation with interpolation points being the principle lattice points of simplicial elements. We prove for d greater than or equal to 2 and k greater than or equal to d + 1 that such interpolation and the finite element solution are not superclose in both H-1 and L-2 norms and that not all such interpolation points are superconvergence points for the finite element approximation. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:33 / 59
页数:27
相关论文
共 30 条
[1]  
ANDREEV AB, 1988, NUMER METH PART D E, V4, P15
[2]  
BRANDTS JH, IN PRESS IMA J NUMER
[3]  
Chen C. M., 1995, HIGH ACCURACY THEORY
[4]  
CHEN CM, 1980, XIANGTAN U J NATURAL, V3, P16
[5]  
CHEN CM, 1980, NUMER MATH J CHINESE, V2, P12
[6]  
CHEN CM, 1978, XIANGTAN U J NAT SCI, V1
[7]  
CHEN CM, 1979, NUMER MATH J CHINESE, V1, P73
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
DOUGLAS J, 1974, REV FR AUTOMAT INFOR, V8, P61
[10]  
DUNLAP RD, 1996, THESIS CORNELL U