Olivine LiFePO4: the remaining challenges for future energy storage

被引:471
作者
Wang, Jiajun [1 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
LITHIUM IRON PHOSPHATE; SODIUM-ION BATTERIES; HIGH-PERFORMANCE CATHODE; ENHANCED ELECTROCHEMICAL PERFORMANCE; HYDROTHERMALLY SYNTHESIZED LIFEPO4; SOLID-SOLUTION PHASES; LI-ION; IN-SITU; ELECTRODE MATERIALS; AMORPHOUS FEPO4;
D O I
10.1039/c4ee04016c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable batteries can effectively store electrical energy as chemical energy, and release it when needed, providing a good choice for applications in electric vehicles (EVs). Naturally, safety concerns are the key issue for the application of battery technology in EVs. Olivine LiFePO4 is considered to be the most promising cathode material for lithium-ion batteries due to its environmental friendliness, high cycling performance and safety characteristics. Some important breakthroughs in recent years have allowed its successful commercialization. However, in spite of its success, the commercial application of LiFePO4 batteries in EVs is still hindered by some technological obstacles. Herein, we provide an update on our previous review, and overview the most significant advances in the remaining challenges for this promising battery material. New research directions and future trends have also been discussed.
引用
收藏
页码:1110 / 1138
页数:29
相关论文
共 248 条
[1]   Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition [J].
Allen, Jan L. ;
Jow, T. Richard ;
Wolfenstine, Jeffrey .
CHEMISTRY OF MATERIALS, 2007, 19 (08) :2108-2111
[2]   The use of in situ techniques in R&D of Li and Mg rechargeable batteries [J].
Amalraj, S. Francis ;
Aurbach, Doron .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (05) :877-890
[3]   High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J].
Amine, K ;
Liu, J ;
Belharouak, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :669-673
[4]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[5]   Nanosized LiFePO4-decorated emulsion-templated carbon foam for 3D micro batteries: a study of structure and electrochemical performance [J].
Asfaw, Habtom D. ;
Roberts, Matthew R. ;
Tai, Cheuk-Wai ;
Younesi, Reza ;
Valvo, Mario ;
Nyholm, Leif ;
Edstrom, Kristina .
NANOSCALE, 2014, 6 (15) :8804-8813
[6]   Magnetic Structures of NaFePO4 Maricite and Triphylite Polymorphs for Sodium-Ion Batteries [J].
Avdeev, Maxim ;
Mohamed, Zakiah ;
Ling, Chris D. ;
Lu, Jiechen ;
Tamaru, Mao ;
Yamada, Atsuo ;
Barpanda, Prabeer .
INORGANIC CHEMISTRY, 2013, 52 (15) :8685-8693
[7]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[8]   Mesoscale Phase Distribution in Single Particles of LiFePO4 following Lithium Deintercalation [J].
Boesenberg, Ulrike ;
Meirer, Florian ;
Liu, Yijin ;
Shukla, Alpesh K. ;
Dell'Anna, Rossana ;
Tyliszczak, Tolek ;
Chen, Guoying ;
Andrews, Joy C. ;
Richardson, Thomas J. ;
Kostecki, Robert ;
Cabana, Jordi .
CHEMISTRY OF MATERIALS, 2013, 25 (09) :1664-1672
[9]   Elucidation of the Na2/3FePO4 and Li2/3FePO4 Intermediate Superstructure Revealing a Pseudouniform Ordering in 2D [J].
Boucher, Florent ;
Gaubicher, Joel ;
Cuisinier, Marine ;
Guyomard, Dominique ;
Moreau, Philippe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (25) :9144-9157
[10]   Phase transitions occurring upon lithium insertion-extraction of LiCoPO4 [J].
Bramnik, Natalia N. ;
Nikolowski, Kristian ;
Baehtz, Carsten ;
Bramnik, Kirill G. ;
Ehrenberg, Helmut .
CHEMISTRY OF MATERIALS, 2007, 19 (04) :908-915