Existence of solutions for a nonlinear PDE with an inverse square potential

被引:52
作者
Chen, JQ [1 ]
机构
[1] Fujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R China
[2] Acad Sinica, Acad Math & Syst Sci, Math Inst, Beijing 100080, Peoples R China
关键词
critical point theory; inverse square potential; critical Sobolev exponent;
D O I
10.1016/S0022-0396(03)00093-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Via Linking theorem and delicate energy estimates, the existence of nontrivial solutions for a nonlinear PDE with an inverse square potential and critical sobolev exponent is proved. This result gives a partial (positive) answer to an open problem proposed in Ferrero and Gazzola (J. Differential Equations 177 (2001) 494). (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:497 / 519
页数:23
相关论文
共 11 条
[1]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[2]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[3]  
CERAMI G, 1984, ANN I H POINCARE-AN, V1, P341
[4]  
CHEN JQ, MULTIPLE SOLUTIONS S
[5]   SOLUTIONS OF ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV EXPONENT IN DIMENSION-3 [J].
COMTE, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (05) :445-455
[6]   Existence of solutions for singular critical growth semilinear elliptic equations [J].
Ferrero, A ;
Gazzola, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (02) :494-522
[7]   The role played by space dimension in elliptic critical problems [J].
Jannelli, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :407-426
[8]  
RABINOWITZ P, 1986, 65 CBMS SERIES
[9]  
SMETS D, 2001, NONLINEAR SCHRODINGE, V2
[10]  
Terracini S, 1996, ADV DIFF EQNS, V1, P241