Analysis of longitudinal studies with missing data using covariance structure modeling with full-information maximum likelihood

被引:170
作者
Raykov, T [1 ]
机构
[1] Fordham Univ, Dept Psychol, Bronx, NY 10458 USA
关键词
D O I
10.1207/s15328007sem1203_8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A didactic discussion of covariance structure modeling in longitudinal studies with missing data is presented. Use of the full-information maximum likelihood method is considered for model fitting, parameter estimation, and hypothesis testing purposes, particularly when interested in patterns of temporal change as well as its covariates and predictors. The approach is illustrated with an application of the popular level-and-shape model to data from a cognitive intervention study of elderly adults.
引用
收藏
页码:493 / 505
页数:13
相关论文
共 20 条
[1]  
Arbuckle J. L., 1996, Advanced structural equation modeling: Issues and techniques, P243, DOI [DOI 10.4324/9781315827414, 10.4324/9781315827414]
[2]  
ARBUCKLE JL, 1999, AMOS 4 USERS GUIDE
[3]  
Baltes Paul B, 1986, Psychol Aging, V1, P172, DOI 10.1037/0882-7974.1.2.172
[4]  
Bentler P. M., 2004, EQS STRUCTURAL EQUAT
[5]   A comparison of inclusive and restrictive strategies in modern missing data procedures [J].
Collins, LM ;
Schafer, JL ;
Kam, CM .
PSYCHOLOGICAL METHODS, 2001, 6 (04) :330-351
[6]  
Du Toit M., 2001, INTERACTIVE LISREL U
[7]  
DUNCAN TE, 1999, INTRO LATENT GROWTH
[8]   A Primer on Maximum Likelihood Algorithms Available for Use With Missing Data [J].
Enders, Craig K. .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2001, 8 (01) :128-141
[9]  
Horn J., 1982, HDB DEV PSYCHOL, P847
[10]  
Johnson R.A., 1988, Applied multivariate statistical analysis