Dynamic Heterogeneous Graph Embedding via Heterogeneous Hawkes Process

被引:19
作者
Ji, Yugang [1 ]
Jia, Tianrui [1 ]
Fang, Yuan [2 ]
Shi, Chuan [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Beijing, Peoples R China
[2] Singapore Management Univ, Singapore, Singapore
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES | 2021年 / 12975卷
基金
中国国家自然科学基金;
关键词
Dynamic heterogeneous graph; Graph embedding; Heterogeneous Hawkes process; Heterogeneous evolved attention mechanism;
D O I
10.1007/978-3-030-86486-6_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph embedding, aiming to learn low-dimensional representations of nodes while preserving valuable structure information, has played a key role in graph analysis and inference. However, most existing methods deal with static homogeneous topologies, while graphs in real-world scenarios are gradually generated with different-typed temporal events, containing abundant semantics and dynamics. Limited work has been done for embedding dynamic heterogeneous graphs since it is very challenging to model the complete formation process of heterogeneous events. In this paper, we propose a novel Heterogeneous Hawkes Process based dynamic Graph Embedding (HPGE) to handle this problem. HPGE effectively integrates the Hawkes process into graph embedding to capture the excitation of various historical events on the current type-wise events. Specifically, HPGE first designs a heterogeneous conditional intensity to model the base rate and temporal influence caused by heterogeneous historical events. Then the heterogeneous evolved attention mechanism is designed to determine the fine-grained excitation to different-typed current events. Besides, we deploy the temporal importance sampling strategy to sample representative events for efficient excitation propagation. Experimental results demonstrate that HPGE consistently outperforms the state-of-the-art alternatives.
引用
收藏
页码:388 / 403
页数:16
相关论文
共 36 条
[1]   Network Embedding and Change Modeling in Dynamic Heterogeneous Networks [J].
Bian, Ranran ;
Koh, Yun Sing ;
Dobbie, Gillian ;
Divoli, Anna .
PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, :861-864
[2]   A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications [J].
Cai, HongYun ;
Zheng, Vincent W. ;
Chang, Kevin Chen-Chuan .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (09) :1616-1637
[3]   Representation Learning for Attributed Multiplex Heterogeneous Network [J].
Cen, Yukuo ;
Zou, Xu ;
Zhang, Jianwei ;
Yang, Hongxia ;
Zhou, Jingren ;
Tang, Jie .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :1358-1368
[4]   How Do the Open Source Communities Address Usability and UX Issues? An Exploratory Study [J].
Cheng, Jinghui ;
Guo, Jin L. C. .
CHI 2018: EXTENDED ABSTRACTS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2018,
[5]   metapath2vec: Scalable Representation Learning for Heterogeneous Networks [J].
Dong, Yuxiao ;
Chawla, Nitesh V. ;
Swami, Ananthram .
KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, :135-144
[6]   HIN2Vec: Explore Meta-paths in Heterogeneous Information Networks for Representation Learning [J].
Fu, Tao-yang ;
Lee, Wang-Chien ;
Lei, Zhen .
CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, :1797-1806
[7]   MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding [J].
Fu, Xinyu ;
Zhang, Jiani ;
Men, Ziqiao ;
King, Irwin .
WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, :2331-2341
[8]  
Goyal P., 2018, DYNGEM DEEP EMBEDDIN
[9]   node2vec: Scalable Feature Learning for Networks [J].
Grover, Aditya ;
Leskovec, Jure .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :855-864
[10]  
Hamilton R. Ying, 2017, IEEE DATA ENG B, V40, P52, DOI DOI 10.48550/ARXIV.1709.05584