Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide

被引:25
作者
Shao, Yiqin [1 ,2 ]
Xu, Fujun [1 ,2 ]
Li, Wei [1 ,2 ]
Zhang, Kun [1 ,2 ]
Zhang, Chunyang [2 ,3 ]
Li, Ranxing [4 ]
Qiu, Yiping [1 ,2 ]
机构
[1] Donghua Univ, Minist Educ, Key Lab Text Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Text, 2999 Renming Rd, Shanghai 201620, Peoples R China
[3] Xinjiang Univ, Coll Text & Apparels, Urumqi 830046, Xinjiang Uyghur, Peoples R China
[4] Shell Oil Co, 281 Albany St, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
Carbon nano-tubes yarn; Interfacial shear strength; Mechanical properties; Fracture mechanism; FIBER-RESIN INTERFACE; SHEAR-STRENGTH; POLYMER COMPOSITES; MICRODROPLET TEST; MICROBOND METHOD; OXYGEN PLASMA; MODEL; DEFORMATION; PRESSURE; RATIO;
D O I
10.1016/j.compositesa.2016.05.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interfacial bonding properties between the carbon nano-tubes yarn and polyphenylene sulfide are investigated using the micro-bond test. Carbon nano-tubes yarn fabricated by floating catalyst chemical vapor deposition with a high Poisson's ratio of 3.5, and high-performance thermoplastic resin polyphenylene sulfide are used as matrix. In order to improve the tensile strength of the yarn so as to get sufficient data points for the micro-bond test for interfacial bonding strength, a pretreatment that combines drafting and dichloromethane shrinking processes is applied. The pretreated carbon nano-tubes yarn shows a 23% increase in tensile strength (from 117 to 144 MPa) and a 260% increase in initial Young's modulus (from 0.8 to 3.2 GPa). The effective interfacial shear strength is calculated to be 13.1 MPa and analyzed based on fracture mechanism of a mixed failure mode. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 47 条
[41]   THE EFFECT OF ELECTRIC-FIELD ON THE BOND STRENGTH BETWEEN THERMOPLASTIC POLYMERS AND CARBON-FIBERS [J].
ZHANDAROV, SF ;
DOVGYALO, VA ;
PISANOVA, EV .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 1994, 8 (09) :995-1005
[42]   Modified shear lag model for fibers and fillers with irregular cross-sectional shapes [J].
Zhang, CY ;
Qiu, YP .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2003, 17 (03) :397-408
[43]   Multifunctional carbon nanotube yarns by downsizing an ancient technology [J].
Zhang, M ;
Atkinson, KR ;
Baughman, RH .
SCIENCE, 2004, 306 (5700) :1358-1361
[44]   Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays [J].
Zhang, Xiaobo ;
Jiang, Kaili ;
Teng, Chen ;
Liu, Peng ;
Zhang, Lina ;
Kong, Jing ;
Zhang, Taihua ;
Li, Qunqing ;
Fan, Shoushan .
ADVANCED MATERIALS, 2006, 18 (12) :1505-+
[45]   Ultrastrong, stiff, and lightweight carbon-nanotube fibers [J].
Zhang, Xiefei ;
Li, Qingwen ;
Holesinger, Terry G. ;
Arendt, Paul N. ;
Huang, Jianyu ;
Kirven, P. Douglas ;
Clapp, Timothy G. ;
DePaula, Raymond F. ;
Liao, Xiazhou ;
Zhao, Yonghao ;
Zheng, Lianxi ;
Peterson, Dean E. ;
Zhu, Yuntian .
ADVANCED MATERIALS, 2007, 19 (23) :4198-+
[46]   The Modification of Kevlar Fibers in Coupling Agents by γ-ray Co-irradiation [J].
Zhang Yanhua ;
Jiang Zaixing ;
Huang Yudong ;
Li Qingwen .
FIBERS AND POLYMERS, 2011, 12 (08) :1014-1020
[47]   The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test [J].
Zu, Mei ;
Li, Qingwen ;
Zhu, Yuntian ;
Dey, Moutushi ;
Wang, Guojian ;
Lu, Weibang ;
Deitzel, Joseph M. ;
Gillespie, John W., Jr. ;
Byun, Joon-Hyung ;
Chou, Tsu-Wei .
CARBON, 2012, 50 (03) :1271-1279