Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide

被引:25
作者
Shao, Yiqin [1 ,2 ]
Xu, Fujun [1 ,2 ]
Li, Wei [1 ,2 ]
Zhang, Kun [1 ,2 ]
Zhang, Chunyang [2 ,3 ]
Li, Ranxing [4 ]
Qiu, Yiping [1 ,2 ]
机构
[1] Donghua Univ, Minist Educ, Key Lab Text Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Coll Text, 2999 Renming Rd, Shanghai 201620, Peoples R China
[3] Xinjiang Univ, Coll Text & Apparels, Urumqi 830046, Xinjiang Uyghur, Peoples R China
[4] Shell Oil Co, 281 Albany St, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
Carbon nano-tubes yarn; Interfacial shear strength; Mechanical properties; Fracture mechanism; FIBER-RESIN INTERFACE; SHEAR-STRENGTH; POLYMER COMPOSITES; MICRODROPLET TEST; MICROBOND METHOD; OXYGEN PLASMA; MODEL; DEFORMATION; PRESSURE; RATIO;
D O I
10.1016/j.compositesa.2016.05.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interfacial bonding properties between the carbon nano-tubes yarn and polyphenylene sulfide are investigated using the micro-bond test. Carbon nano-tubes yarn fabricated by floating catalyst chemical vapor deposition with a high Poisson's ratio of 3.5, and high-performance thermoplastic resin polyphenylene sulfide are used as matrix. In order to improve the tensile strength of the yarn so as to get sufficient data points for the micro-bond test for interfacial bonding strength, a pretreatment that combines drafting and dichloromethane shrinking processes is applied. The pretreated carbon nano-tubes yarn shows a 23% increase in tensile strength (from 117 to 144 MPa) and a 260% increase in initial Young's modulus (from 0.8 to 3.2 GPa). The effective interfacial shear strength is calculated to be 13.1 MPa and analyzed based on fracture mechanism of a mixed failure mode. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 47 条
[1]   Modeling and simulation of crack propagation in mixed-modes interlaminar fracture specimens [J].
Allix, O ;
Corigliano, A .
INTERNATIONAL JOURNAL OF FRACTURE, 1996, 77 (02) :111-140
[2]   Glass fibre strength distribution determined by common experimental methods [J].
Andersons, J ;
Joffe, R ;
Hojo, M ;
Ochiai, S .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (01) :131-145
[4]   THE EFFECTS OF SURFACE TREATMENTS OF FIBERS ON THE INTERFACIAL PROPERTIES IN SINGLE-FIBER COMPOSITES .1. SINGLE CARBON-FIBER EPOXY-RESIN COMPOSITE SYSTEM [J].
BIAN, XS ;
AMBROSIO, L ;
KENNY, JM ;
NICOLAIS, L ;
OCCHIELLO, E ;
MORRA, M ;
GARBASSI, F ;
DIBENEDETTO, AT .
JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 1991, 5 (05) :377-388
[5]   NEGATIVE POISSON RATIO IN 2-DIMENSIONAL NETWORKS UNDER TENSION [J].
BOAL, DH ;
SEIFERT, U ;
SHILLCOCK, JC .
PHYSICAL REVIEW E, 1993, 48 (06) :4274-4283
[6]   Recent Advances in Research on Carbon Nanotube-Polymer Composites [J].
Byrne, Michele T. ;
Gun'ko, Yurii K. .
ADVANCED MATERIALS, 2010, 22 (15) :1672-1688
[7]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[8]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[9]   The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite [J].
Deng, Fei ;
Lu, Weibang ;
Zhao, Haibo ;
Zhu, Yuntian ;
Kim, Byung-Sun ;
Chou, Tsu-Wei .
CARBON, 2011, 49 (05) :1752-1757
[10]  
Duckett K, 1975, FIBER YARN PROCESSIN, P359