A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila

被引:92
|
作者
Port, Fillip [1 ,2 ]
Strein, Claudia [1 ,2 ]
Stricker, Mona [1 ,2 ]
Rauscher, Benedikt [1 ,2 ]
Heigwer, Florian [1 ,2 ]
Zhou, Jun [1 ,2 ]
Beyersdorffer, Celine [1 ,2 ]
Frei, Jana [1 ,2 ]
Hess, Amy [1 ,2 ]
Kern, Katharina [1 ,2 ]
Lange, Laura [1 ,2 ]
Langner, Nora [1 ,2 ]
Malamud, Roberta [1 ,2 ]
Pavlovic, Bojana [1 ,2 ]
Radecke, Kristin [1 ,2 ]
Schmitt, Lukas [1 ,2 ]
Voos, Lukas [1 ,2 ]
Valentini, Erica [1 ,2 ]
Boutros, Michael [1 ,2 ]
机构
[1] German Canc Res Ctr, Div Signaling & Funct Genom, Heidelberg, Germany
[2] Heidelberg Univ, Heidelberg, Germany
来源
ELIFE | 2020年 / 9卷
基金
欧洲研究理事会;
关键词
GENE-EXPRESSION; LIBRARY; CELLS; GUIDE; CAS9; SECRETION; PLATFORM; REVEALS; SCREENS; TOOLKIT;
D O I
10.7554/eLife.53865
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Genetic screens are powerful tools for the functional annotation of genomes. In the context of multicellular organisms, interrogation of gene function is greatly facilitated by methods that allow spatial and temporal control of gene abrogation. Here, we describe a large-scale transgenic short guide (sg) RNA library for efficient CRISPR-based disruption of specific target genes in a constitutive or conditional manner. The library consists currently of more than 2600 plasmids and 1700 fly lines with a focus on targeting kinases, phosphatases and transcription factors, each expressing two sgRNAs under control of the Gal4/UAS system. We show that conditional CRISPR mutagenesis is robust across many target genes and can be efficiently employed in various somatic tissues, as well as the germline. In order to prevent artefacts commonly associated with excessive amounts of Cas9 protein, we have developed a series of novel UAS-Cas9 transgenes, which allow fine tuning of Cas9 expression to achieve high gene editing activity without detectable toxicity. Functional assays, as well as direct sequencing of genomic sgRNA target sites, indicates that the vast majority of transgenic sgRNA lines mediate efficient gene disruption. Furthermore, we conducted the so far largest fully transgenic CRISPR screen in any metazoan organism, which further supported the high efficiency and accuracy of our library and revealed many so far uncharacterized genes essential for development.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Whole organism and tissue-specific analysis of pexophagy in Drosophila
    Barone, Francesco G.
    Marcello, Marco
    Urbe, Sylvie
    Sanchez-Soriano, Natalia
    Clague, Michael J.
    OPEN BIOLOGY, 2025, 15 (02)
  • [32] Tissue-specific tagging of endogenous loci in Drosophila melanogaster
    Koles, Kate
    Yeh, Anna R.
    Rodal, Avital A.
    BIOLOGY OPEN, 2016, 5 (01): : 83 - 89
  • [33] CLONING, EXPRESSION, AND REGULATION OF TISSUE-SPECIFIC GENES IN DROSOPHILA
    KOROCHKIN, LI
    GENETIKA, 1995, 31 (08): : 1029 - 1042
  • [34] Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila
    Smibert, Peter
    Miura, Pedro
    Westholm, Jakub O.
    Shenker, Sol
    May, Gemma
    Duff, Michael O.
    Zhang, Dayu
    Eads, Brian D.
    Carlson, Joe
    Brown, James B.
    Eisman, Robert C.
    Andrews, Justen
    Kaufman, Thomas
    Cherbas, Peter
    Celniker, Susan E.
    Graveley, Brenton R.
    Lai, Eric C.
    CELL REPORTS, 2012, 1 (03): : 277 - 289
  • [35] A novel method for tissue-specific RNAi rescue in Drosophila
    Schulz, Joachim G.
    David, Guido
    Hassan, Bassem A.
    NUCLEIC ACIDS RESEARCH, 2009, 37 (13)
  • [36] Large-scale in situ CRISPR screens in mice
    Kotsiliti, Eleni
    NATURE BIOTECHNOLOGY, 2022, 40 (09) : 1327 - 1327
  • [37] Large-scale methylation analysis of human genomic DNA reveals tissue-specific differences between the methylation profiles of genes and pseudogenes
    Grunau, C
    Hindermann, W
    Rosenthal, A
    HUMAN MOLECULAR GENETICS, 2000, 9 (18) : 2651 - 2663
  • [38] Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets
    Lam, Max
    Trampush, Joey W.
    Yu, Jin
    Knowles, Emma
    Davies, Gail
    Liewald, David C.
    Starr, John M.
    Djurovic, Srdjan
    Melle, Ingrid
    Sundet, Kjetil
    Christoforou, Andrea
    Reinvang, Ivar
    DeRosse, Pamela
    Lundervold, Astri J.
    Steen, Vidar M.
    Espeseth, Thomas
    Raikkonen, Katri
    Widen, Elisabeth
    Palotie, Aarno
    Eriksson, Johan G.
    Giegling, Ina
    Konte, Bettina
    Roussos, Panos
    Giakoumaki, Stella
    Burdick, Katherine E.
    Payton, Antony
    Ollier, William
    Chiba-Falek, Ornit
    Attix, Deborah K.
    Need, Anna C.
    Cirulli, Elizabeth T.
    Voineskos, Aristotle N.
    Stefanis, Nikos C.
    Avramopoulos, Dimitrios
    Hatzimanolis, Alex
    Arking, Dan E.
    Smyrnis, Nikolaos
    Bilder, Robert M.
    Freimer, Nelson A.
    Cannon, Tyrone D.
    London, Edythe
    Poldrack, Russell A.
    Sabb, Fred W.
    Congdon, Eliza
    Conley, Emily Drabant
    Scult, Matthew A.
    Dickinson, Dwight
    Straub, Richard E.
    Donohoe, Gary
    Morris, Derek
    CELL REPORTS, 2017, 21 (09): : 2597 - 2613
  • [39] Tissue-specific genes as an underutilized resource in drug discovery
    Ryaboshapkinad, Maria
    Hammar, Marten
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [40] Tissue-specific genes as an underutilized resource in drug discovery
    Maria Ryaboshapkina
    Mårten Hammar
    Scientific Reports, 9