DEGREE CONDITIONS AND FRACTIONAL k-FACTORS OF GRAPHS

被引:3
作者
Zhou, Sizhong [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Math & Phys, Zhenjiang 212003, Jiangsu, Peoples R China
关键词
graph; degree; k-factor; fractional k-factor; EXISTENCE;
D O I
10.4134/BKMS.2011.48.2.353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= I be an integer, and let G be a 2-connected graph of order n with n >= max{7, 4k + 1}, and the minimum degree delta(G) >= k + 1. In this paper, it is proved that G has a fractional k-factor excluding any given edge if G satisfies max{d(G)(x),d(G)(y)} >= n/2 for each pair of nonadjacent vertices x,p of C. Furthermore, it is showed that the result in this paper is best possible in some sense.
引用
收藏
页码:353 / 363
页数:11
相关论文
共 13 条
[1]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[2]   AN ORE-TYPE CONDITION FOR THE EXISTENCE OF K-FACTORS IN GRAPHS [J].
IIDA, T ;
NISHIMURA, T .
GRAPHS AND COMBINATORICS, 1991, 7 (04) :353-361
[3]  
Li Z., 2003, Mathematica Applicata (China), V16, P148
[4]   Toughness and the existence of fractional k-factors of graphs [J].
Liu, Guizhen ;
Zhang, Lanju .
DISCRETE MATHEMATICS, 2008, 308 (09) :1741-1748
[5]   Fractional (g, f)-factors of graphs [J].
Liu, GZ ;
Zhang, LJ .
ACTA MATHEMATICA SCIENTIA, 2001, 21 (04) :541-545
[6]   A DEGREE CONDITION FOR THE EXISTENCE OF K-FACTORS [J].
NISHIMURA, T .
JOURNAL OF GRAPH THEORY, 1992, 16 (02) :141-151
[7]  
WANG C, 2005, INT J MATH MATH SCI, P863
[8]  
YU J, 2005, GONGCHENG SHUXUE XUE, V22, P377
[9]   Notes on the binding numbers for (a,b,k)-critical graphs [J].
Zhou, Sizhong ;
Jiang, Jiashang .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 76 (02) :307-314
[10]   Some new sufficient conditions for graphs to have fractional k-factors [J].
Zhou, Sizhong .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (03) :484-490