Transcriptional activating activity of Smad4: Roles of SMAD hetero-oligomerization and enhancement by an associating transactivator

被引:101
作者
Shioda, T
Lechleider, RJ
Dunwoodie, SL
Li, HC
Yahata, T
de Caestecker, MP
Fenner, MH
Roberts, AB
Isselbacher, KJ
机构
[1] Massachusetts Gen Hosp E, Ctr Canc, Lab Tumor Biol, Charlestown, MA 02129 USA
[2] NCI, Lab Cell Regulat & Carcinogenesis, NIH, Bethesda, MD 20892 USA
[3] Natl Inst Med Res, Div Mammalian Dev, London NW7 1AA, England
关键词
D O I
10.1073/pnas.95.17.9785
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Smad4 plays a pivotal role in signal transduction of the transforming growth factor beta superfamily cytokines by mediating transcriptional activation of target genes. Hetero-oligomerization of Smad4 with the pathway-restricted SMAD proteins is essential for Smad4-mediated transcription. We provide evidence that SMAD hetero-oligomerization is directly required for the Smad4 C-terminal domain [Smad4(C)] to show its transcriptional transactivating activity; this requirement obtains even when Smad4(C) is recruited to promoters by heterologous DNA binding domains and in the absence of the inhibitory Smad4 N-terminal domain. Defined mutations of GAL4 DNA-binding domain fusion of Smad4(C) that disrupt SMAD hetero-oligomerization suppressed transcriptional activation, Importantly, we found that an orphan transcriptional activator MSG1, a nuclear protein that has strong transactivating activity but apparently lacks DNA-binding activity, functionally interacted with Smad4 and enhanced transcription mediated by GAL4 DNA-binding domain-Smad4(C) and full length Smad4, Transcriptional enhancement by MSG1 depended on transforming growth factor beta signaling and was suppressed by Smad4(C) mutations disrupting SMAD hetero-oligomerization or by the presence of Smad4 N-terminal domain. Furthermore, Smad4(C) did not show any detectable transactivating activity in yeast when fused to heterologous DNA binding domains. These results demonstrate additional roles of SMAD hetero-oligomerization in Smad4-mediated transcriptional activation. They also suggest that the transcriptional-activating activity observed in the presence of Smad4 in mammalian cells may be derived, at least in part, from endogenously expressed separate transcriptional activators, such as MSG1.
引用
收藏
页码:9785 / 9790
页数:6
相关论文
共 33 条
[1]   T beta RI phosphorylation of Smad2 on Ser(465) and Ser(467) is required for Smad2-Smad4 complex formation and signaling [J].
Abdollah, S ;
MaciasSilva, M ;
Tsukazaki, T ;
Hayashi, H ;
Attisano, L ;
Wrana, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (44) :27678-27685
[2]   Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase c-Jun N-terminal kinase (SAPK/JNK) signaling pathway [J].
Atfi, A ;
Buisine, M ;
Mazars, A ;
Gespach, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (40) :24731-24734
[3]   Smad4 and FAST-1 in the assembly of activin-responsive factor [J].
Chen, X ;
Weisberg, E ;
Fridmacher, V ;
Watanabe, M ;
Naco, G ;
Whitman, M .
NATURE, 1997, 389 (6646) :85-89
[4]   A transcriptional partner for MAD proteins in TGF-beta signalling [J].
Chen, X ;
Rubock, MJ ;
Whitman, M .
NATURE, 1996, 383 (6602) :691-696
[5]   THE 2-HYBRID SYSTEM - A METHOD TO IDENTIFY AND CLONE GENES FOR PROTEINS THAT INTERACT WITH A PROTEIN OF INTEREST [J].
CHIEN, CT ;
BARTEL, PL ;
STERNGLANZ, R ;
FIELDS, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (21) :9578-9582
[6]   Characterization of functional domains within Smad4/DPC4 [J].
deCaestecker, MP ;
Hemmati, P ;
LarischBloch, S ;
Ajmera, R ;
Roberts, AB ;
Lechleider, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (21) :13690-13696
[7]   Msg1 and Mrg1, founding members of a gene family, show distinct patterns of gene expression during mouse embryogenesis [J].
Dunwoodie, SL ;
Rodriguez, TA ;
Beddington, RSP .
MECHANISMS OF DEVELOPMENT, 1998, 72 (1-2) :27-40
[8]   MADR2 maps to 18q21 and encodes a TGF beta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma [J].
Eppert, K ;
Scherer, SW ;
Ozcelik, H ;
Pirone, R ;
Hoodless, P ;
Kim, H ;
Tsui, LC ;
Bapat, B ;
Gallinger, S ;
Andrulis, IL ;
Thomsen, GH ;
Wrana, JL ;
Attisano, L .
CELL, 1996, 86 (04) :543-552
[9]  
FENNER MH, 1998, IN PRESS GENOMICS
[10]  
FINLEY RL, 1996, DNA CLONING EXPRESSI, P169