Nitrogen-enriched carbon with extremely high mesoporosity and tunable mesopore size for high-performance supercapacitors

被引:38
作者
Yang, Xiaoqing [1 ]
Li, Chengfei [1 ]
Fu, Ruowen [2 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Inst Mat Sci, Sch Chem & Chem Engn, Guangzhou 510275, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Supercapacitors; Electrode materials; Nitrogen-enriched carbon; Nanostructure; Mesopore size; HIERARCHICAL POROUS CARBON; CONTAINING FUNCTIONAL-GROUPS; ELECTROCHEMICAL PERFORMANCE; ACTIVATED CARBON; ELECTRODE MATERIAL; SURFACE-AREA; AEROGELS; CAPACITANCE;
D O I
10.1016/j.jpowsour.2016.04.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As one of the most potential electrode materials for supercapacitors, nitrogen-enriched nanocarbons are still facing challenge of constructing developed mesoporosity for rapid mass transportation and tailoring their pore size for performance optimization and expanding their application scopes. Herein we develop a series of nitrogen-enriched mesoporous carbon (NMC) with extremely high mesoporosity and tunable mesopore size by a two-step method using silica gel as template. In our approach, mesopore size can be easily tailored from 4.7 to 35 nm by increasing the HF/TEOS volume ratio from 1/100 to 1/4. The NMC with mesopores of 6.2 nm presents the largest mesopore volume, surface area and mesopore ratio of 2.56 cm(3) g(-1), 1003 m(2) g(-1) and 97.7%, respectively. As a result, the highest specific capacitance of 325 F g(-1) can be obtained at the current density of 0.1 A g(-1), which can stay over 88% (286 F g(-1)) as the current density increases by 100 times (10 A g(-1)). This approach may open the doors for preparation of nitrogen-enriched nanocarbons with desired nanostructure for numerous applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 41 条
[1]   Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries [J].
Bhattacharjya, Dhrubajyoti ;
Park, Hyean-Yeol ;
Kim, Min-Sik ;
Choi, Hyuck-Soo ;
Inamdar, Shaukatali N. ;
Yu, Jong-Sung .
LANGMUIR, 2014, 30 (01) :318-324
[2]   Synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors [J].
Chen, Aibing ;
Yu, Yifeng ;
Xing, Tingting ;
Wang, Rujie ;
Li, Yonglei ;
Li, Yuetong .
MATERIALS LETTERS, 2015, 157 :30-33
[3]   Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Yao, Wei-Tang ;
Yu, Zi-You ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) :3331-3338
[4]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[5]   Synthesis of Partially Graphitic Ordered Mesoporous Carbons with High Surface Areas [J].
Gao, Wenjun ;
Wan, Ying ;
Dou, Yuqian ;
Zhao, Dongyuan .
ADVANCED ENERGY MATERIALS, 2011, 1 (01) :115-123
[6]   Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors [J].
Han, Jinpeng ;
Xu, Guiyin ;
Ding, Bing ;
Pan, Jin ;
Dou, Hui ;
MacFarlane, Douglas R. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (15) :5352-5357
[7]   Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors [J].
Hao, Pin ;
Zhao, Zhenhuan ;
Leng, Yanhua ;
Tian, Jian ;
Sang, Yuanhua ;
Boughton, Robert I. ;
Wong, C. P. ;
Liu, Hong ;
Yang, Bin .
NANO ENERGY, 2015, 15 :9-23
[8]   Nitrogen-enriched porous carbon nanofiber networks for binder-free supercapacitors obtained by using a reactive surfactant as a porogen [J].
Huang, Kaibing ;
Li, Min ;
Chen, Zhenhua ;
Yao, Yiyuan ;
Yang, Xiuwen .
ELECTROCHIMICA ACTA, 2015, 158 :306-313
[9]   Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors [J].
Hulicova, D ;
Kodama, M ;
Hatori, H .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2318-2326
[10]   Combined Effect of Nitrogen- and Oxygen-Containing Functional Groups of Microporous Activated Carbon on its Electrochemical Performance in Supercapacitors [J].
Hulicova-Jurcakova, Denisa ;
Seredych, Mykola ;
Lu, Gao Qing ;
Bandosz, Teresa J. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (03) :438-447