Spectroscopic ellipsometry study on the dielectric function of bulk Ti2AlN, Ti2AlC, Nb2AlC, (Ti0.5, Nb0.5)2AlC, and Ti3GeC2 MAX-phases

被引:11
作者
Mendoza-Galvan, A. [1 ,2 ]
Rybka, M. [2 ]
Jarrendahl, K. [2 ]
Arwin, H. [2 ]
Magnuson, M. [2 ]
Hultman, L. [2 ]
Barsoum, M. W. [3 ]
机构
[1] Cinvestav Queretaro, Queretaro 76230, Mexico
[2] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[3] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
MECHANICAL-PROPERTIES; THIN-FILMS;
D O I
10.1063/1.3525648
中图分类号
O59 [应用物理学];
学科分类号
摘要
The averaged complex dielectric function epsilon = (2 epsilon(perpendicular to) + epsilon(parallel to))/3 of polycrystalline Ti2AlN, Ti2AlC, Nb2AlC, (Ti-0.5, Nb-0.5)(2)AlC, and Ti3GeC2 was determined by spectroscopic ellipsometry covering the mid infrared to the ultraviolet spectral range. The dielectric functions epsilon(perpendicular to) and epsilon(parallel to) correspond to the perpendicular and parallel dielectric tensor components relative to the crystallographic c-axis of these hexagonal compounds. The optical response is represented by a dispersion model with Drude-Lorentz and critical point contributions. In the low energy range the electrical resistivity is obtained from the Drude term and ranges from 0.48 mu Omega m for Ti3GeC2 to 1.59 mu Omega m for (Ti-0.5, Nb-0.5)(2)AlC. Furthermore, several compositional dependent interband electronic transitions can be identified. For the most important ones, Im(epsilon) shows maxima at: 0.78, 1.23, 2.04, 2.48, and 3.78 eV for Ti2AlN; 0.38, 1.8, 2.6, and 3.64 eV for Ti2AlC; 0.3, 0.92, and 2.8 eV in Nb2AlC; 0.45, 0.98, and 2.58 eV in (Ti-0.5, Nb-0.5)(2)AlC; and 0.8, 1.85, 2.25, and 3.02 eV in Ti3GeC2. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3525648]
引用
收藏
页码: Chemistry and Biology / Linköping University
页数:8
相关论文
共 32 条
[1]  
ARWIN H, 2008, PHYS STATUS SOLIDI C, V5, P1003
[2]   Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5 [J].
Barsoum, MW ;
Ali, M ;
El-Raghy, T .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2000, 31 (07) :1857-1865
[3]   Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC [J].
Barsoum, MW ;
Salama, I ;
El-Raghy, T ;
Golczewski, J ;
Porter, WD ;
Wang, H ;
Seifert, HJ ;
Aldinger, F .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2002, 33 (09) :2775-2779
[4]   Thermopower, Hall tensor, and relaxation time approximation for elemental zinc [J].
Chaput, L. ;
Pecheur, P. ;
Scherrer, H. .
PHYSICAL REVIEW B, 2007, 75 (04)
[5]  
Collins R., 2005, Handbook of Ellipsometry, DOI DOI 10.1007/3-540-27488-X
[6]   The Mn+1AXn phases: Materials science and thin-film processing [J].
Eklund, Per ;
Beckers, Manfred ;
Jansson, Ulf ;
Hogberg, Hans ;
Hultman, Lars .
THIN SOLID FILMS, 2010, 518 (08) :1851-1878
[7]   Electronic, thermal, and elastic properties of Ti3Si1-xGexC2 solid solutions -: art. no. 085104 [J].
Finkel, P ;
Seaman, B ;
Harrell, K ;
Palma, J ;
Hettinger, JD ;
Lofland, SE ;
Ganguly, A ;
Barsoum, MW ;
Sun, Z ;
Li, S ;
Ahuja, R .
PHYSICAL REVIEW B, 2004, 70 (08) :085104-1
[8]   Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2 (x=0.5, 0.75) solid solutions [J].
Ganguly, A ;
Zhen, T ;
Barsoum, MW .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 376 (1-2) :287-295
[9]   Dielectric properties of Ti2AlC and Ti2AlN MAX phases:: The conductivity anisotropy [J].
Haddad, Noel ;
Garcia-Caurel, Enric ;
Hultman, Lars ;
Barsoum, Michel W. ;
Hug, Gilles .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
[10]   Electrical transport, thermal transport, and elastic properties of M2AlC (M=Ti, Cr, Nb, and V) -: art. no. 115120 [J].
Hettinger, JD ;
Lofland, SE ;
Finkel, P ;
Meehan, T ;
Palma, J ;
Harrell, K ;
Gupta, S ;
Ganguly, A ;
El-Raghy, T ;
Barsoum, MW .
PHYSICAL REVIEW B, 2005, 72 (11)