Extension of the operator of best polynomial approximation in Lp(Ω)

被引:13
作者
Cuenya, Hector H. [1 ]
机构
[1] Univ Nacl Rio Cuarto, Dept Matemat, RA-5800 Rio Cuarto, Argentina
关键词
Best approximation; Generalized polynomials; L-p-norm; Extension of operators; ISOTONIC APPROXIMATION;
D O I
10.1016/j.jmaa.2010.10.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (Omega, A, mu) be a finite measure space. In this paper we extend the operator of the best generalized polynomial approximation from the space L-p(Omega) to the space Lp-1(Omega), 1 < p < infinity, as the unique operator preserving the property of continuity. The case p = 1 is also considered. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:565 / 575
页数:11
相关论文
共 12 条
[1]   Extension of the best approximation operator in Orlicz spaces [J].
Carrizo, Ivana ;
Favier, Sergio ;
Zo, Felipe .
ABSTRACT AND APPLIED ANALYSIS, 2008,
[2]  
CHENEY EW, 1982, INTRO APPROXIMATION
[3]  
Favier S., 2001, ABSTR APPL ANAL, V6, P101
[4]  
Favier S., 2005, REAL ANAL EXCHANGE, V30, P29
[5]   ISOTONIC APPROXIMATION IN LS [J].
LANDERS, D ;
ROGGE, L .
JOURNAL OF APPROXIMATION THEORY, 1981, 31 (03) :199-223
[6]  
LEG DA, 1989, J APPROX THEORY, V59, P116
[7]   Weak inequalities for maximal functions in Orlicz-Lorentz spaces and applications [J].
Levis, Fabian E. .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) :239-251
[8]   Isotonic approximation in L1 [J].
Mazzone, F ;
Cuenya, H .
JOURNAL OF APPROXIMATION THEORY, 2002, 117 (02) :279-300
[9]   Maximal inequalities and lebesgue's differentiation theorem for best approximant by constant over balls [J].
Mazzone, F ;
Cuenya, H .
JOURNAL OF APPROXIMATION THEORY, 2001, 110 (02) :171-179
[10]  
Pinkus A., 1988, CAMBRIDGE TRACTS MAT, V93