The Mechanism Analysis on Open-Circuit Back EMF in Fractional-Slot Concentrated Winding Permanent Magnet Machines Using Air-Gap Field Modulation Theory

被引:9
作者
Zhang, Hengliang [1 ]
Yin, Hang [1 ]
Hua, Wei [2 ]
Zhu, Xiaofeng [3 ]
Gerada, David [4 ]
Wang, Bo [1 ]
机构
[1] Southeast Univ, Sch Elect Engn, Nanjing 210096, Peoples R China
[2] Southeast Univ, Yancheng Inst New Energy Vehicles, Nanjing 210096, Peoples R China
[3] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Peoples R China
[4] Univ Nottingham, Power Elect Machines & Control Grp, Nottingham NG7 2RD, England
基金
美国国家科学基金会;
关键词
Harmonic analysis; Stator windings; Windings; Power capacitors; Rotors; Air gaps; Power harmonic filters; Air-gap field modulation (AFM); fractional-slot concentrated winding; permanent magnet machines; rotor-permanent magnet (PM) machines; stator-PM machines; PM MACHINES; ELECTROMAGNETIC PERFORMANCE; EXPERIMENTAL-VERIFICATION; FLUX; DESIGN; STATOR;
D O I
10.1109/TTE.2021.3066290
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article investigates the production mechanism of the open-circuit back-electromotive force (back EMF) in fractional-slot concentrated winding permanent magnet (FSCW-PM) machines based on the air-gap field modulation (AFM) theory. The relationship between spatial PM field harmonics and temporal back EMF harmonics is discovered by using a general model, which is suitable for both stator-PM and rotor-PM machines. The analysis results reveal that the FSCW-PM machines produce their open-circuit back EMF on the basis of AFM, which means that each back EMF harmonic is induced not only by a specific single spatial field harmonic but also by several different spatial field harmonics. Furthermore, a general winding factor calculation formula for FSCW-PM machines is derived together with the general calculation formula of all back EMF harmonics. Finally, the analysis is verified numerically by the finite element method and experimentally.
引用
收藏
页码:2658 / 2670
页数:13
相关论文
共 33 条
[1]   Use of the star of slots in designing fractional-slot single-layer synchronous motors [J].
Bianchi, N ;
Pré, MD .
IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2006, 153 (03) :459-466
[2]   Design considerations for fractional-slot winding configurations of synchronous machines [J].
Bianchi, Nicola ;
Bolognani, Silverio ;
Pre, Michele Dai ;
Grezzani, Giorgio .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2006, 42 (04) :997-1006
[3]   Torque Ripple-Free Operation of PM BLDC Drives With Petal-Wave Current Supply [J].
Buja, Giuseppe ;
Bertoluzzo, Manuele ;
Keshri, Ritesh Kumar .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (07) :4034-4043
[4]  
Chalmers B. J., 1964, P I ELECT ENG, V111, P1859, DOI [10.1049/piee.1964.0304, DOI 10.1049/PIEE.1964.0304]
[5]   Influence of Slot Opening on Optimal Stator and Rotor Pole Combination and Electromagnetic Performance of Switched-Flux PM Brushless AC Machines [J].
Chen, J. T. ;
Zhu, Z. Q. ;
Iwasaki, S. ;
Deodhar, Rajesh P. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2011, 47 (04) :1681-1691
[6]   Comparison of All- and Alternate-Poles-Wound Flux-Switching PM Machines Having Different Stator and Rotor Pole Numbers [J].
Chen, J. T. ;
Zhu, Z. Q. .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2010, 46 (04) :1406-1415
[7]   Winding Configurations and Optimal Stator and Rotor Pole Combination of Flux-Switching PM Brushless AC Machines [J].
Chen, J. T. ;
Zhu, Z. Q. .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2010, 25 (02) :293-302
[8]   Analysis of Airgap Field Modulation Principle of Simple Salient Poles [J].
Cheng, Ming ;
Wen, Honghui ;
Han, Peng ;
Zhu, Xiaofeng .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (04) :2628-2638
[9]   General Airgap Field Modulation Theory for Electrical Machines [J].
Cheng, Ming ;
Han, Peng ;
Hua, Wei .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (08) :6063-6074
[10]   Overview of Stator-Permanent Magnet Brushless Machines [J].
Cheng, Ming ;
Hua, Wei ;
Zhang, Jianzhong ;
Zhao, Wenxiang .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (11) :5087-5101