Characterization on graphs which achieve a Das' upper bound for Laplacian spectral radius

被引:7
作者
Yu, AM
Lu, M [1 ]
Tian, F
机构
[1] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian matrix; spectral radius; degree;
D O I
10.1016/j.laa.2004.11.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph on vertex set V = {v(1), v(2),...,v(n)). For any vertex v(i), we denote by N(v(i)) the set of the vertices adjacent to v(i) in G. Das got the following upper bound for Laplacian spectral radius: l(1) (G) <= max {vertical bar N(v(i)) boolean OR N(v(j))vertical bar : 1 <= i < j <= n, v(i) v(j) is an element of E} In this paper, we characterize all the connected graphs which achieve the above upper bound. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 4 条
[1]  
Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI [10.1080/03081088508817681, DOI 10.1080/03081088508817681]
[2]   A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs [J].
Das, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 376 :173-186
[3]   An improved upper bound for Laplacian graph eigenvalues [J].
Das, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 :269-278
[4]   An always nontrivial upper bound for Laplacian graph eigenvalues [J].
Rojo, O ;
Soto, R ;
Rojo, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 312 (1-3) :155-159