Let G = (V, E) be a graph on vertex set V = {v(1), v(2),...,v(n)). For any vertex v(i), we denote by N(v(i)) the set of the vertices adjacent to v(i) in G. Das got the following upper bound for Laplacian spectral radius: l(1) (G) <= max {vertical bar N(v(i)) boolean OR N(v(j))vertical bar : 1 <= i < j <= n, v(i) v(j) is an element of E} In this paper, we characterize all the connected graphs which achieve the above upper bound. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:271 / 277
页数:7
相关论文
共 4 条
[1]
Anderson W. N., 1985, Linear Multilinear Algebra, V18, P141, DOI [10.1080/03081088508817681, DOI 10.1080/03081088508817681]