LR-type fully Pythagorean fuzzy linear programming problems with equality constraints

被引:29
作者
Akram, Muhammad [1 ]
Ullah, Inayat [1 ]
Allahviranloo, Tofigh [2 ]
Edalatpanah, S. A. [3 ]
机构
[1] Univ Punjab, Dept Math, New Campus, Lahore, Pakistan
[2] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[3] Ayandegan Inst Higher Educ, Dept Appl Math, Tonekabon, Iran
关键词
Pythagorean fuzzy linear programming problem; ranking function; LR-type Pythagorean fuzzy numbers; GROUP DECISION-MAKING; MEMBERSHIP GRADES; OPTIMIZATION; TOPSIS;
D O I
10.3233/JIFS-210655
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Pythagorean fuzzy set is a powerful model for depicting fuzziness and uncertainty. This model is more flexible and practical as compared to an intuitionistic fuzzy model. This research article presents a new model called LR-type fully Pythagorean fuzzy linear programming problem. We consider the notions of LR-type Pythagorean fuzzy number, ranking for LR-type Pythagorean fuzzy numbers and arithmetic operations for unrestricted LR-type Pythagorean fuzzy numbers. We propose a method to solve LR-type fully Pythagorean fuzzy linear programming problems with equality constraints. We describe our proposed method with numerical examples including diet problem.
引用
收藏
页码:1975 / 1992
页数:18
相关论文
共 61 条
[1]   A Novel Ranking Approach to Solving Fully LR-Intuitionistic Fuzzy Transportation Problems [J].
Abhishekh ;
Nishad, A. K. .
NEW MATHEMATICS AND NATURAL COMPUTATION, 2019, 15 (01) :95-112
[2]  
Akram M, 2020, IRAN J FUZZY SYST, V17, P147
[3]   Fully Pythagorean fuzzy linear programming problems with equality constraints [J].
Akram, Muhammad ;
Ullah, Inayat ;
Allahviranloo, Tofigh ;
Edalatpanah, S. A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04)
[4]   Methods for solving LR-bipolar fuzzy linear systems [J].
Akram, Muhammad ;
Allahviranloo, Tofigh ;
Pedrycz, Witold ;
Ali, Muhammad .
SOFT COMPUTING, 2021, 25 (01) :85-108
[5]   Multi-criteria group decisionmaking based on ELECTRE I method in Pythagorean fuzzy information [J].
Akram, Muhammad ;
Ilyas, Farwa ;
Garg, Harish .
SOFT COMPUTING, 2020, 24 (05) :3425-3453
[6]   The Adomian decomposition method for fuzzy system of linear equations [J].
Allahviranloo, T .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :553-563
[7]  
Allahviranloo T., 2008, APPL MATH SCI, V2, P19
[8]   A Linear Programming Approach to Solve Constrained Bi-matrix Games with Intuitionistic Fuzzy Payoffs [J].
An, Jing-Jing ;
Li, Deng-Feng .
INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2019, 21 (03) :908-915
[9]   Optimization in an intuitionistic fuzzy environment [J].
Angelov, PP .
FUZZY SETS AND SYSTEMS, 1997, 86 (03) :299-306
[10]  
Atanassov KT, 2012, STUD FUZZ SOFT COMP, V283, P1, DOI 10.1007/978-3-642-29127-2