Harmonic index of dense graphs

被引:0
作者
Liu, Jianxi [1 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Dept Appl Math, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic index; dense graphs; minimum value; SUM-CONNECTIVITY INDEX; CONJECTURE; AOUCHICHE; HANSEN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The harmonic weight of an edge is defined as reciprocal of the average degree of its end-Vertices. The harmonic index of a graph G is defined as the sum of all harmonic weights of its edges. In this work, we give the minimum value of the harmonic index for any n-vertex connected graphs with minimum degree 5 at least k(>= n/2) and show the corresponding extremal graphs have only two degrees, i.e., degree k and degree n - 1, and the number of vertices of degree k is as close to n/2 as possible.
引用
收藏
页码:293 / 304
页数:12
相关论文
共 27 条
  • [1] [Anonymous], 2008, MATH CHEM MONOGRAPHS
  • [2] On the Randic index
    Delorme, C
    Favaron, O
    Rautenbach, D
    [J]. DISCRETE MATHEMATICS, 2002, 257 (01) : 29 - 38
  • [3] Proof of the first part of the conjecture of Aouchiche and Hansen about the Randic index
    Divnic, Tomica R.
    Pavlovic, Ljiljana R.
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) : 953 - 960
  • [4] Du Z., 2010, J MATH CHEM, V47
  • [5] Du ZB, 2012, B MALAYS MATH SCI SO, V35, P101
  • [6] On the general sum-connectivity index of trees
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (03) : 402 - 405
  • [7] Minimum general sum-connectivity index of unicyclic graphs
    Du, Zhibin
    Zhou, Bo
    Trinajstic, Nenad
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2010, 48 (03) : 697 - 703
  • [8] Fajtlowicz S., 1998, Technical report
  • [9] Fajtlowicz S., 1987, Congr. Numerantium, V60, P187, DOI DOI 10.4236/APM.2014.45021
  • [10] SOME EIGENVALUE PROPERTIES IN GRAPHS (CONJECTURES OF GRAFFITI .2.)
    FAVARON, O
    MAHEO, M
    SACLE, JF
    [J]. DISCRETE MATHEMATICS, 1993, 111 (1-3) : 197 - 220