Ultrafilter Convergence in Ordered Topological Spaces

被引:0
作者
Lipparini, Paolo [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Viale Ordini Sci, I-00133 Rome, Italy
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2016年 / 33卷 / 02期
关键词
Linearly ordered; Generalized ordered topological space; Ultrafilter convergence; Compactness; Pseudocompactness; (pseudo-)gap; Converging.-sequence; (weak) [nu.nu]-compactness; (weak) initial lambda-compactness; Complete accumulation point; lambda-boundedness; Decomposable; Descendingly complete; Regular ultrafilter; COMPACT;
D O I
10.1007/s11083-015-9365-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize ultrafilter convergence and ultrafilter compactness in linearly ordered and generalized ordered topological spaces. In such spaces, and for every ultrafilter D, the notions of D-compactness and of D-pseudocompactness are equivalent. Any product of initially lambda-compact generalized ordered topological spaces is still initially lambda-compact. On the other hand, preservation under products of certain compactness properties is independent from the usual axioms for set theory.
引用
收藏
页码:269 / 287
页数:19
相关论文
共 28 条
[1]  
Alexandroff P., 1929, VERHANDELINGEN AMSTE, V14, P93
[2]  
[Anonymous], 1990, STUDIES LOGIC FDN MA
[3]  
[Anonymous], 2012, TOPOL P
[4]   ON BOX, WEAK BOX AND STRONG COMPACTNESS [J].
APTER, AW ;
HENLE, JM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 :513-518
[5]   THE WEAK CLASS-STAR IS REALLY WEAKER THAN THE FULL-CLASS [J].
BENDAVID, S ;
MAGIDOR, M .
JOURNAL OF SYMBOLIC LOGIC, 1986, 51 (04) :1029-1033
[6]  
Bennett HR, 2002, RECENT PROGRESS IN GENERAL TOPOLOGY II, P83, DOI 10.1016/B978-044450980-2/50003-0
[7]  
Bernstein A. I., 1970, FUND MATH, V66, P185
[8]  
Caicedo X., 1999, SYNTHESE LIB, V280, P131
[9]   REGULARITY OF ULTRAFILTERS AND THE CORE MODEL [J].
DONDER, HD .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 63 (03) :289-322
[10]  
GARCIAFERREIRA S, 2001, TOPOLOGY P, V24, P149