Semi-analytical solutions for cubic autocatalytic reaction-diffusion equations; the effect of a precursor chemical

被引:0
|
作者
Alharthi, M. R. [1 ]
Marchant, T. R. [2 ]
Nelson, M. I. [2 ]
机构
[1] Univ Taif, Sch Math, At Taif, Saudi Arabia
[2] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2500, Australia
来源
ANZIAM JOURNAL | 2011年 / 53卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Semi-analytical solutions for a cubic autocatalytic reaction, with linear decay and a precursor chemical, are considered. The model is coupled with diffusion and considered in a one-dimensional reactor. In this model the reactant is supplied by two mechanisms, diffusion via the cell boundaries and decay of an abundant precursor chemical present in the reactor. The Galerkin method is used to approximate the spatial structure of the reactant and autocatalyst concentrations in the reactor. Ordinary differential equations are then obtained as an approximation to the governing partial differential equations and analyzed to obtain semi-analytical results for the reaction-diffusion cell. Singularity theory and a local stability analysis are used to determine the regions of parameter space in which the different types of bifurcation diagrams and Hopf bifurcations occur. The effect of the precursor chemical concentration is examined in detail and some novel behaviours are identified.
引用
收藏
页码:C511 / C524
页数:14
相关论文
共 50 条
  • [1] Cubic autocatalytic reaction-diffusion equations: semi-analytical solutions
    Marchant, TR
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2020): : 873 - 888
  • [2] Mixed quadratic-cubic autocatalytic reaction-diffusion equations: Semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5160 - 5173
  • [3] Cubic autocatalysis in a reaction-diffusion annulus: semi-analytical solutions
    Alharthi, M. R.
    Marchant, T. R.
    Nelson, M. I.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):
  • [4] SEMI-ANALYTICAL SOLUTIONS FOR THE BRUSSELATOR REACTION-DIFFUSION MODEL
    Alfifi, H. Y.
    ANZIAM JOURNAL, 2017, 59 (02): : 167 - 182
  • [5] Cubic autocatalysis in a reaction–diffusion annulus: semi-analytical solutions
    M. R. Alharthi
    T. R. Marchant
    M. I. Nelson
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [6] Cubic autocatalysis with Michaelis-Menten kinetics: semi-analytical solutions for the reaction-diffusion cell
    Marchant, TR
    CHEMICAL ENGINEERING SCIENCE, 2004, 59 (16) : 3433 - 3440
  • [7] Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
    Al Noufaey, K. S.
    RESULTS IN PHYSICS, 2018, 9 : 609 - 614
  • [8] Semi-Analytical Source Method for Reaction-Diffusion Problems
    Cole, K. D.
    Cetin, B.
    Demirel, Y.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2018, 140 (06):
  • [9] Non-smooth feedback control for Belousov-Zhabotinskii reaction-diffusion equations: semi-analytical solutions
    Alfifi, H. Y.
    Marchant, T. R.
    Nelson, M. I.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (08) : 1632 - 1657
  • [10] A semi-analytical approach for the reversible Schnakenberg reaction-diffusion system
    Al Noufaey, K. S.
    RESULTS IN PHYSICS, 2020, 16