Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries

被引:277
作者
Eshetu, Gebrekidan Gebresilassie [1 ,2 ,3 ,4 ,5 ]
Diemant, Thomas [6 ]
Hekmatfar, Maral [1 ,2 ]
Grugeon, Sylvie [7 ]
Behm, R. Juergen [1 ,6 ]
Laruelle, Stephane [7 ]
Armand, Michel [3 ]
Passerini, Stefano [1 ,2 ]
机构
[1] Helmholtz Inst Ulm HIU Electrochem Energy Storage, Helmholtzstr 11, D-89081 Ulm, Germany
[2] Karlsruhe Inst Technol, POB 3640, D-76021 Karlsruhe, Germany
[3] CIC Energigune, Elect Energy Storage Dept, Parque Tecnol Alava,Albert Einstein 48, E-01510 Minano, Alava, Spain
[4] Mekelle Univ, Coll Nat & Computat Sci, Dept Chem, POB 231, Mekelle, Ethiopia
[5] Rhein Westfal TH Aachen, Inst Power Elect & Elect Drives ISEA, Jagerstr 17-19, D-52066 Aachen, Germany
[6] Ulm Univ, Inst Surface Chem & Catalysis, Albert Einstein Allee 47, D-89081 Ulm, Germany
[7] CNRS, UMR7314, LRCS, Reseau Stockage Electrochim Energie, RS2E FR-3459, Amiens, France
关键词
Sodium-ion battery; NIB; Electrolyte; Salt anions; Solid electrolyte interphase; SEI; RAY PHOTOELECTRON-SPECTROSCOPY; HIGH-PERFORMANCE; ENERGY-STORAGE; SURFACE-CHEMISTRY; LOW-COST; LITHIUM; CARBON; LI; METAL; MECHANISMS;
D O I
10.1016/j.nanoen.2018.10.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aiming at a more comprehensive understanding of the solid electrolyte interphase (SEI) in sodium ion batteries (NIBs), a detailed X-ray photoelectron spectroscopy (XPS) investigation of the few-nanometer thick passivation film formed on hard carbon (HC) in contact with various Na+-ion conducting electrolytes is reported. The electrolytes investigated include 1 M solutions of NaPF6, NaClO4, NaTFSI, NaFSI, and NaFTFSI, all dissolved in a common mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) (EC/DEC = 1/1 wt. ratio). For comparison, the study of analogous Li-based electrolytes containing LiPF6 and LiFSI as representative electrolyte salts is also reported. The anion and cation of the electrolyte salt appear to play a key role in determining the overall SEI layer composition, including its depth evolution and thickness. The SEI building species formed on hard carbon by solvent reduction upon sodiation are found to decrease with the various salts in the order: NaPF6 > NaClO4 approximate to NaTFSI > NaFTFSI > NaFSI. The comparison of lithiated and sodiated HC electrodes shows that the SEI layer is more homogeneous and richer in organic species upon the use of Na-based electrolytes. Surface and depth-profiling XPS analysis on HC electrodes charged in the various electrolyte formulations provides in-depth insights on the differences and similarities of the SEI (composition, thickness, depth evolution, etc.) evolving from the variation in the chemical structure of the cations and anions of the respective salts.
引用
收藏
页码:327 / 340
页数:14
相关论文
共 50 条
  • [31] Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries
    Hao, Zhimeng
    Li, Geng
    Lu, Yong
    Cai, Yichao
    Yang, Gaojing
    Chen, Jun
    NANO RESEARCH, 2023, 16 (11) : 12647 - 12654
  • [32] Solid Electrolyte Interphase Formation on Anatase TiO2 Nanoparticle-Based Electrodes for Sodium-Ion Batteries
    Siebert, Andreas
    Dou, Xinwei
    Garcia-Diez, Raul
    Buchholz, Daniel
    Felix, Roberto
    Handick, Evelyn
    Wilks, Regan G.
    Passerini, Stefano
    Bar, Marcus
    ACS APPLIED ENERGY MATERIALS, 2023, 7 (01) : 125 - 132
  • [33] Tuning of Na+ Concentration in an Ionic Liquid Electrolyte to Optimize Solid-Electrolyte Interphase at Microplasma-Synthesized Graphene Anode for Na-Ion Batteries
    Luo, Xu-Feng
    Chiang, Wei-Hung
    Su, Ching-Yuan
    Wu, Tzi-Yi
    Majumder, S. B.
    Chang, Jeng-Kuei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (19) : 16682 - 16689
  • [34] Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon
    Patra, Jagabandhu
    Huang, Hao-Tzu
    Xue, Weijiang
    Wang, Chao
    Helal, Ahmed S.
    Li, Ju
    Chang, Jeng-Kuei
    ENERGY STORAGE MATERIALS, 2019, 16 : 146 - 154
  • [35] In operando measurements of kinetics of solid electrolyte interphase formation in lithium-ion batteries
    Alemu, Tibebu
    Pradanawati, Sylvia Ayu
    Chang, Shih-Chang
    Lin, Pin-Ling
    Kuo, Yu-Lin
    Quoc-Thai Pham
    Su, Chia-Hung
    Wang, Fu-Ming
    JOURNAL OF POWER SOURCES, 2018, 400 : 426 - 433
  • [36] Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium-ion batteries depending on the electrolyte composition
    Winkler, V.
    Hanemann, T.
    Bruns, M.
    SURFACE AND INTERFACE ANALYSIS, 2017, 49 (05) : 361 - 369
  • [37] Nucleation and Growth Mechanism of Anion-Derived Solid Electrolyte Interphase in Rechargeable Batteries
    Yan, Chong
    Jiang, Li-Li
    Yao, Yu-Xing
    Lu, Yang
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (15) : 8521 - 8525
  • [38] Toward a Mechanistic Model of Solid-Electrolyte Interphase Formation and Evolution in Lithium-Ion Batteries
    Spotte-Smith, Evan Walter Clark
    Kam, Ronald L.
    Barter, Daniel
    Xie, Xiaowei
    Hou, Tingzheng
    Dwaraknath, Shyam
    Blau, Samuel M.
    Persson, Kristin A.
    ACS ENERGY LETTERS, 2022, 7 (04) : 1446 - 1453
  • [39] Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy
    Unocic, Raymond R.
    Sun, Xiao-Guang
    Sacci, Robert L.
    Adamczyk, Leslie A.
    Alsem, Daan Hein
    Dai, Sheng
    Dudney, Nancy J.
    More, Karren L.
    MICROSCOPY AND MICROANALYSIS, 2014, 20 (04) : 1029 - 1037
  • [40] The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries
    Li, Xiaolin
    Yan, Pengfei
    Engelhard, Mark H.
    Crawford, Alasdair J.
    Viswanathan, Vilayanur V.
    Wang, Chongmin
    Liu, Jun
    Sprenkle, Vincent L.
    NANO ENERGY, 2016, 27 : 664 - 672