Stationary bootstrapping for non-parametric estimator of nonlinear autoregressive model

被引:10
作者
Hwang, Eunju [1 ]
Shin, Dong Wan [1 ]
机构
[1] Ewha Womans Univ, Inst Math Sci, Seoul 120750, South Korea
关键词
Nonlinear autoregressive process; non-parametric kernel estimator; stationary bootstrap procedure; Primary: 62G08; 62M05; Secondary: 62F40; TIME-SERIES; DENSITY-ESTIMATION; STRONG-CONVERGENCE; ERGODICITY; IDENTIFICATION; JACKKNIFE;
D O I
10.1111/j.1467-9892.2010.00699.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider stationary bootstrap approximation of the non-parametric kernel estimator in a general kth-order nonlinear autoregressive model under the conditions ensuring that the nonlinear autoregressive process is a geometrically Harris ergodic stationary Markov process. We show that the stationary bootstrap procedure properly estimates the distribution of the non-parametric kernel estimator. A simulation study is provided to illustrate the theory and to construct confidence intervals, which compares the proposed method favorably with some other bootstrap methods.
引用
收藏
页码:292 / 303
页数:12
相关论文
共 40 条
[1]  
[Anonymous], 1992, LECT NOTES STAT
[2]  
AUESTAD B, 1990, BIOMETRIKA, V77, P669, DOI 10.2307/2337091
[3]   ON GEOMETRIC ERGODICITY OF NONLINEAR AUTOREGRESSIVE MODELS [J].
BHATTACHARYA, R ;
LEE, CH .
STATISTICS & PROBABILITY LETTERS, 1995, 22 (04) :311-315
[4]  
Bhattacharya R., 2007, Random dynamical systems: theory and applications
[5]   ERGODICITY OF NONLINEAR FIRST-ORDER AUTOREGRESSIVE MODELS [J].
BHATTACHARYA, RN ;
LEE, CH .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (01) :207-219
[6]   ON THE USE OF THE DETERMINISTIC LYAPUNOV FUNCTION FOR THE ERGODICITY OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
CHAN, KS ;
TONG, H .
ADVANCES IN APPLIED PROBABILITY, 1985, 17 (03) :666-678
[7]  
Chung K., 1974, A course in probability theory
[8]  
Doukhan P., 1983, Stochastic Process. Appl., V15, P271, DOI DOI 10.1016/0304-4149(83)90036-4
[9]   Bootstrapping nonparametric estimators of the volatility function [J].
Franke, E ;
Neumann, MH ;
Stockis, JP .
JOURNAL OF ECONOMETRICS, 2004, 118 (1-2) :189-218
[10]   ON BOOTSTRAPPING KERNEL SPECTRAL ESTIMATES [J].
FRANKE, J ;
HARDLE, W .
ANNALS OF STATISTICS, 1992, 20 (01) :121-145